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3.4.4 Moments 

 

The mean (or expectation) of X is sometimes called the first moment of X, 

since it is defined as the sum or integral of the probability density function multiplied 

by the first power of x. By a simple extension the k-th moment of a distribution is 

defined by 
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The symbol 
k  denote kE X   , the k-th moment of the distribution. The mean of the 

distribution is then denoted by 
1 , often abbreviated simply to μ. 

 

A useful result that relates the second moment, the mean and the variance of 

a distribution is proved using the properties of the expectation operator: 
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In alternative notations, this result can be written 

 

                                     
22 2x x x      or   2 2

2 1                        (3.24) 

 

Exercise 1. A biased die has probabilities / 2, , , , , 2p p p p p p  of showing 1, 2, 3, 4, 5, 

6 respectively. Find (i) the mean, (ii) the second moment and (iii) the variance of 

this probability distribution. 

By demanding that the sum of the probabilities equals unity we require 

2 /13p  . Using the definition of the mean (3.16) for a discrete distribution, 

                         
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Using the definition of the second moment (3.22), 
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                     2 2 2 2 2 2 2 21
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Using the definition of the variance (3.19), with 53 /13  , we obtain 
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It is easy to verify that      
22V X E X E X    . 

 

In practice, to calculate the moments of a distribution it is often simpler to use 

the moment generating function discussed later.  

 

3.4.5 Central moments 

 

The variance  V X  is sometimes called the second central moment of the 

distribution, since it is defined as the sum or integral of the probability density 

function multiplied by the second power of x  . The origin of the term ‘central’ is 

that by subtracting μ from x before squaring we are considering the moment about 

the mean of the distribution, rather than about 0x  . Thus the k-th central moment 

of a distribution is defined as 
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k  is the notation for the k-th central moment. Thus   2V X   and we may write 

(3.23) as 2

2 2 1    . The first central moment of a distribution is always zero since, 

for example in the continuous case, 

                                 1 0x f x dx xf x dx f x dx               

 

We can write the k-th central moment of a distribution in terms of its k-th and 

lower-order moments by expanding  
k

X   in powers of X. We have already noted 

that 2

2 2 1    , and similar expressions may be obtained for higher-order central 

moments. For example, 
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In general, it is straightforward to show that 

 

                        
11 1

1 1 1 11 1 1
r kr r k k
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 

                   (3.28) 

 

Direct evaluation of the sum or integral in (3.25) can be rather tedious for higher 

moments, and it is usually quicker to use the moment generating function, from 

which the central moments can be easily evaluated as well. 

 

Exercise 2. The PDF for a Gaussian distribution with mean μ and variance 2  is 

given by 
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Obtain an expression for the k-th central moment of this distribution. 

 

The k-th central moment of  f x  is given by 
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We made the substitution, 
                                                   y x        dy dx   
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It is clear that if k is odd then the integrand is an odd function of y and hence the 

integral equals zero. Thus, 0k   if k is odd 2 1k n  . When k is even, we could 
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calculate 
k  by integrating by parts to obtain a reduction formula, but it is more 

elegant to consider instead the standard integral  
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and differentiate it repeatedly with respect to α . Thus, we obtain 
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Setting 
2

1

2



  and substituting the above result into (3.29), we find (for k even) 
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                                                      1 3 5 1 k
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Generally, one may also characterise a probability distribution  f x  using the 

closely related normalised and dimensionless central moments 
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 
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 
                                            (3.32) 

γ3 and γ4 are more commonly called, respectively, the skewness and kurtosis of the 

distribution. The skewness γ3 of a distribution is zero if it is symmetrical about its 

mean. If the distribution is skewed to values of x smaller than the mean then 
3 0  . 

Similarly 
3 0   if the distribution is skewed to higher values of x. 

From the above example, we see that the kurtosis of the Gaussian distribution 

is given by 
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                                      (3.33) 
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It is therefore common practice to define the excess kurtosis of a distribution 

as 
4 3  . A positive value of the excess kurtosis implies a relatively narrower peak 

and wider wings than the Gaussian distribution with the same mean and variance. A 

negative excess kurtosis implies a wider peak and shorter wings. 

 

3.4.5 Functions of random variables 

Suppose X is some random variable for which the probability density function 

 f x  is known. In many cases, we are more interested in a related random variable 

 Y Y X , where  Y X  is some function of X. What is the probability density 

function  g y  for the new random variable Y ? We now discuss how to obtain this 

function. 

1. Discrete random variables 

If X is a discrete RV that takes only the values 
ix , 1,2, ,i n , then Y must also be 

discrete and takes the values  i iy Y x , although some of these values may be 

identical. The probability function for Y is given by 

 

                                           
   if  

0     otherwise

j i

j

f x y y
g y

 


 



                                    (3.34) 

where the sum extends over those values of j for which  i jy Y x  . The simplest case 

arises when the function  Y X  possesses a single-valued inverse  X Y . In this case, 

only one x-value corresponds to each y-value, and we obtain a closed-form 

expression for  g y  given by 

                                             
     if  

0     otherwise

i if x y y y
g y

 
 


                                 (3.35) 

If  Y X  does not possess a single-valued inverse then the situation is more 

complicated and it may not be possible to obtain a simple expression for  g y . 

Nevertheless, whatever the form of  Y X , one can always use (3.34) to obtain the 

numerical values of the probability function  g y  at 
iy y . 

2. Continuous random variables 

If X is a continuous RV, then so too is the new random variable  Y Y X . The 

probability that Y lies in the range y to y dy  is given by 

 

                                                         
dS

g y dy f x dx                                    (3.36) 
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where dS corresponds to all values of x for which Y lies in the range y to y dy . Once 

again the simplest case occurs when  Y X  possesses a single-valued inverse  X Y . 

In this case, we may write 

                                 
 

 

 
 

 

  

dx
x y dy

x y dy dy

x y x y

dx
g y dy f x dx f x dx dy f x y

dy




          

From which we obtain  

                                                      
dx

g y f x y
dy

                                       (3.37) 

 

Exercise 3. A lighthouse is situated at a distance L from a straight coastline, opposite 

a point O, and sends out a narrow continuous beam of light simultaneously in 

opposite directions. The beam rotates with constant angular velocity. If the random 

variable Y is the distance along the coastline, measured from O, of the spot that the 

light beam illuminates, find its probability density function. 

The situation is illustrated in figure 3.3. Since the light beam rotates at a 

constant angular velocity, θ is distributed uniformly between −π/2 and π/2, and so 

  1/f   . Now y Ltg , which possesses the single-valued inverse 
y

arctg
L

  , 

provided that θ lies between −π/2 and π/2. Since  

                                        
2

2

2

1
1 1

cos

dy y
L L tg L

d L


 

  
         

 , 

 From (3.37) we find 

                                
  2

1 1

1 /

dx d
g y f x y

dy dy L y L



 
  


  for y    

A distribution of this form is called a Cauchy distribution. 

 
Figure 3.3 The illumination of a coastline by the beam from a lighthouse. 
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If  Y X  does not possess a single-valued inverse then we encounter 

complications, since there exist several intervals in the X-domain for which Y lies 

between y and y dy . This is illustrated in figure 3.4, which shows a function  Y X  

such that  X Y  is a double-valued function of Y. The range y to y dy  corresponds 

to X’s being either in the range 
1x  to 

1 1x dx  or in the range 
2x  to 

2 2x dx . In general, 

it may not be possible to obtain an expression for  g y  in closed form, although the 

distribution may always be obtained numerically using (3.36).  

 
Figure 3.4 

 

However, a closed-form expression may be obtained in the case where there exist 

single-valued functions  1x y  and  2x y  giving the two values of x that correspond 

to any given value of y. In this case, 

 

                                          
 

 

 
 

 1 2

1 2

x y dy x y dy

x y x y

g y dy f x dx f x dx

 

   , 

from which we obtain 

                                               1 2
1 2

dx dx
g y f x y f x y

dy dy
                       (3.38)  

 

This result may be generalised straightforwardly to the case where the range y to 

y dy  corresponds to more than two x-intervals. 

 

Exercise 4. The random variable X is Gaussian distributed with mean μ and variance 
2 . Find the PDF of the new variable  

2 2/Y X    . 
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It is clear that  X Y  is a double-valued function of Y. However, in this case, 

it is straightforward to obtain single-valued functions giving the two values of x that 

correspond to a given value of y; these are 

 

                                
 

2

2

x
y






         

22y x         y x      

                                x y          1x y   ,   2x y    

 

where y  is taken to mean the positive square root. 

The PDF of X is given by  

                                       
 

2

22
1

2

x

f x e





 




                                         (3.39) 

Since 1

2

dx

dy y


    and 2

2

dx

dy y


 , from (3.38) we obtain 

                                           1 2
1 2

dx dx
g y f x y f x y

dy dy
   

 

                                  
1 1

2 2
1 1

2 2 2 2

y y

g y e e
y y

 

   

 
    

 

                                                 
1

2
2

2 2

y

g y e
y



 



  

 

                                                
1/2 1

2
1 1

22

y

g y y e



 

  
 

                                   (3.40) 

 

This is the gamma distribution 
1 1

,
2 2


 
 
 

 . 

 

3.4.6. Functions of several random variables 

We may extend our discussion further, to the case in which the new random 

variable is a function of several other random variables. Let us consider the random 

variable  ,Z Z X Y , which is a function of two other RVs X and Y. Given that these 

variables are described by the joint probability density function  ,f x y , we wish to 

find the probability density function  p z  of the variable Z. 

If X and Y are both discrete RVs then 
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                                                     
,

,i j

i j

p z f x y                                        (3.41) 

where the sum extends over all values of i and j for which  ,i jZ x y z . Similarly, if 

X and Y are both continuous RVs then  p z  is found by requiring that 

 

                                                    ,  
dS

p z dz f x y dx dy                                 (3.42) 

where dS is the infinitesimal area in the xy-plane lying between the curves  ,Z x y z  

and  ,Z x y z dz  . 

 

3.4.7 Expectation values and variances 

In some cases, one is interested only in the expectation value or the variance 

of the new variable Z rather than in its full probability density function. Let us 

consider the random variable  ,Z Z X Y , which is a function of two RVs X and Y 

with a known joint distribution  ,f x y . 

It is clear that  E Z  and  V Z  can be obtained, in principle, by first using the 

methods discussed above to obtain  p z  and then evaluating the appropriate sums 

or integrals. The intermediate step of calculating  p z  is not necessary, however, 

since it is straightforward to obtain expressions for  E Z  and  V Z  in terms of the 

variables X and Y . For example, if X and Y are continuous RVs then the expectation 

value of Z is given by    

                                        , ,  E Z zp z dz Z x y f x y dx dy                         (3.43) 

An analogous result exists for discrete random variables. 

Integrals of the form (3.43) are often difficult to evaluate. Nevertheless, we 

may use (3.43) to derive an important general result concerning expectation values. 

If X and Y are any two random variables and a and b are arbitrary constants then by 

letting Z aX bY    we find 

                                               E aX bY aE X bE Y                                      (3.44) 

Furthermore, we may use this result to obtain an approximate expression for the 

expectation value  ,E Z X Y    of any arbitrary function of X and Y. Letting 

 X E X   and  Y E Y  , and provided  ,Z X Y  can be reasonably approximated by 

the linear terms of its Taylor expansion about the point  ,X Y  , we have 

                                , ,X Y X Y

Z Z
Z X Y Z X Y

X Y
   

    
       

    
                  (3.45) 

where the partial derivatives are evaluated at 
XX   and 

YY  . Taking the 

expectation values of both sides, we find 
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                    , , ,X Y X Y X Y

Z Z
E Z X Y Z E X E Y Z

X Y
     

    
                

   

which gives the approximate result: 

                                                   , ,X YE Z X Y Z                                       (3.46) 

 

By analogy with (3.43), the variance of  ,Z Z X Y  is given by 

                       

                                
22

, ,  Z ZV Z z p z dz Z x y f x y dx dy                    (3.47) 

 

where  Z E Z  . We may use this expression to derive a second useful result. If X 

and Y are two independent random variables, so that      ,f x y g x h y , and a, b and 

c are constants then by setting Z aX bY c    in (3.47) we obtain 

                        

                                                 2 2V aX bY c a V X b V Y                              (3.48) 

 

From (3.48) we also obtain the important special case 

                                                    V X Y V X Y V X V Y                           (3.49) 

 

Provided X and Y are indeed independent random variables, we may obtain an 

approximate expression for  ,V Z X Y   , for any arbitrary function  ,Z X Y . Taking 

the variance of both sides of (3.45), and using (3.48), we find 

                                            
2 2

,
Z Z

V Z X Y V X V Y
X Y

    
            

                    (3.50) 

the partial derivatives are evaluated at 
XX   and 

YY   . 

 

3.5 Generating functions 

 

When dealing with particular sets of functions 
nf , each member of the set 

being characterised by a different non-negative integer n, it is sometimes possible to 

summarise the whole set by a single function of a dummy variable (say t), called a 

generating function. The relationship between the generating function and the n-th 

member 
nf  of the set is that if the generating function is expanded as a power series 

in t then 
nf  is the coefficient of nt . For example, in the expansion of the generating 

function    
1/2

2, 1 2G z t zt t


   , the coefficient of nt  is the n-th Legendre polynomial 

 nP z , i.e. 
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                                             
1/2

2

0

, 1 2 n

n

n

G z t zt t P z t






                         (3.51) 

Many useful properties of, and relationships between, the members of a set of 

functions could be established using the generating function and other functions 

obtained from it, e.g. its derivatives. 

Similar ideas can be used in the area of probability theory, and two types of 

generating function can be usefully defined: probability generating function and 

moment generating function. 

 

3.5.1 Probability generating functions 

 

Probability generating functions are restricted in applicability to integer 

distributions, of which the most common (the binomial, the Poisson and the 

geometric) are considered in this and later subsections. In such distributions a 

random variable may take only non-negative integer values. The actual possible 

values may be finite or infinite in number, but, for formal purposes, all integers, 

0,1,2,  are considered possible. If only a finite number of integer values can occur 

in any particular case then those that cannot occur are included but are assigned zero 

probability. 

If the probability that the random variable X takes the value 
nx  is  nf x , then  

                                                           1n

n

f x    

However, only non-negative integer values of 
nx  are possible, and we can, without 

ambiguity, write the probability that X takes the value n as 
nf , with 

                                                            
0

1n

n

f




                                               (3.52) 

We define the probability generating function  X t  by 

                                                       
0

 n

X n

n

t f t




                                           (3.53) 

It is apparent that   X

X t E t      and that, by (3.52),  1 1X  .   

Probably the simplest example of a probability generating function (PGF) is 

provided by the random variable X defined by (Bernoulli)     

  

                               
1  if the outcome of a single trial is a 'success'

0  if the trial ends in 'failure'
X


 


         

 

If the probability of success is p and that of failure 1q p   then     
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                                            0 1 0 0X t qt pt q pt                                (3.54) 

 

A Poisson-distributed integer variable with mean λ  has a PGF      

     

                                            
0 !

n
n t

X

n

e
t t e e

n


 





                                       (3.55) 

We note that, as required,  1 1X   in both cases. 

 

Useful results will be obtained by differentiating (3.53) with respect to t. 

Taking the first derivative we find 

 

                    
  1

0

  
X n

n

n

d t
n f t

dt







             

0

1X n

n

nf E X




                          (3.56) 

and differentiating once more we obtain 

 

           
 

 
2

2

2
0

1   
X n

n

n

d t
n n f t

dt







             

0

1 1 1X n

n

n n f E X X




          (3.57) 

 

Equation (3.56) shows that  1X
  gives the mean of X. Using both (3.57) and (3.23) 

  2 2V X E X     , allows us to write 

                            
22

1 1 1 1X X X E X X E X E X                  

                                                            
22E X E X E X E X            

                                                          
22E X E X V X                             (3.58) 

 

and so express the variance of X in terms of the derivatives of its probability 

generating function. 

 

Exercise 5. A random variable X is given by the number of trials needed to obtain a 

first success when the chance of success at each trial is constant and equal to p. Find 

the probability generating function for X and use it to determine the mean and 

variance of X. 

 

Clearly, at least one trial is needed, and so 
0 0f  . If n (≥ 1) trials are needed 

for the first success, the first 1n  trials must have resulted in failure. Thus 

 

                                                       1Pr nX n q p   ,  1n                              (3.59) 
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where 1q p   is the probability of failure in each individual trial. The corresponding 

probability generating function is thus 

                

                                         1

0 1

  n n n

X n

n n

t f t q p t
 



 

     

                                                
1 1 1

n
n

n

p p qt pt
qt

q q qt qt

  
 

                             (3.60)  

 

where we have used the result for the sum of a geometric series, to obtain a closed-

form expression for  X t . Again, as must be the case,  1 1X  . 

To find the mean and variance of X we need to evaluate  1X
  and  1X

 . 

Differentiating (3.60) gives             

                                     
 

2
1

X

p
t

qt
 


             

1
1X

p
   

                                    
 

3

2

1
X

pq
t

qt
 


                2

2
1X

q

p
   

Thus 

                                      
1

1XE X
p

    

                                   
2

2 2 2

2 1 1
1 1 1X X X

q q
V X

p p p p
              

A distribution with probabilities of the general form (3.59) is known as a geometric 

distribution and is discussed later. This form of distribution is common in ‘waiting 

time’ problems. 

 

Sums of random variables 

We now turn to considering the sum of two or more independent random 

variables, say X and Y, and denote by 
2S  the random variable 

                                                      
2S X Y    

If  
2S t  is the PGF for 

2S , the coefficient of nt  in its expansion is given by the 

probability that X Y n   and is thus equal to the sum of the probabilities that X r   

and Y n r   for all values of r in 0 r n  . Since such outcomes for different values 

of r are mutually exclusive, we have 

                                      

                                      
0

Pr Pr Pr
n

r

X Y n X r Y n r


                              (3.61) 

Multiplying both sides by nt  and summing over all values of n enables us to express 

this relationship in terms of probability generating functions as follows: 
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                             
0 0 0

Pr Pr Pr
n

n r n r

X Y

n n r

t X Y n t X r t Y n r t
 





  

          

 

                                                                       
0

Pr Prr n r

r n r

X r t Y n r t
 



 

     

The change in summation order is justified by reference to figure 3.5, which 

illustrates that the summations are over exactly the same pairs of values of n and r, 

but with the first (inner) summation over the points in a column rather than over the 

points in a row. 

 
Figure 3.5 

 

 Now, setting n r s   gives the final result, 

 

                                          
0 0

Pr Prr s

X Y

r s

t X r t Y s t
 



 

       

                                                     X Yt t                                                (3.62) 

i.e. the PGF of the sum of two independent random variables is equal to the product 

of their individual PGFs.  

                                                X Y X YE t E t E t                                             (3.63) 

 

Clearly result (3.62) can be extended to more than two random variables: 

                                                    
1

1

n
i

i

i

n

X
X i

t t





  


                                      (3.64) 

and, further, if all the 
iX  have the same probability distribution, 

                                                   
1

n

i

i

n

X
X

t t



    


                                       (3.65) 

This latter result has immediate application in the deduction of the PGF for the 

binomial distribution from that for a single trial, equation (3.54). 
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3.5.2 Moment generating functions 

 

For a random variable X, and a real number t, the moment generating function 

(MGF) is defined by 

                    

                       
 

 

  for a discrete distribution

  for a continuous distribution

itx

i
tX i

X
tx

e f x

M t E e

e f x dx




    






          (3.66)   

   0 1 1M E   

The PGF and the MGF for a random variable X are closely related: 

      

                                           X

X t E t      ,          tX

XM t E e                         (3.67)  

 

The MGF can thus be obtained from the PGF by replacing t by te , and vice versa. 

The MGF has more general applicability, however, since it can be used with both 

continuous and discrete distributions whilst the PGF is restricted to non-negative 

integer distributions. 

As its name suggests, the MGF is particularly useful for obtaining the 

moments of a distribution, as is easily seen by noting that  

 

                                 
2 2 3 3

1
2! 3!

tX

X

t X t X
M t E e E tX

 
        

 
          

                                                         
2 3

2 31
2! 3!

t t
E X t E X E X               (3.68) 

 

Assuming that the MGF exists for all t around the point 0t  , we can deduce that the 

moments of a distribution are given in terms of its MGF by 

 

                                                     
 

0

n

Xn

n

t

d M t
E X

dt


                                    (3.69) 

 

Similarly, by substitution in     
22V X E X E X    , the variance of the distribution 

is given by 

                                                     
2

0 0X XV X M M                                   (3.70) 

 

where the prime denotes differentiation with respect to t. 
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Exercise 6. The MGF for the Gaussian distribution is given by         

                                                         
2 21

2
t t

XM t e
 

                                   (3.71) 

Find the expectation and variance of this distribution. 

 

Using (3.69),       

                                   
2 21

2 2
t t

XM t t e
 

 


                   0XE X M         

    

                             
2 21

2
2 2 2

t t

XM t t e
 

  
    

  
        2 2 20XE X M          

 

Thus, using (3.70), 

                                          
2 2 2 2 20 0X XV X M M              

The mean is found to be μ and the variance 2  and justifies the use of these symbols 

in the Gaussian distribution.  

 

The moment generating function has several useful properties that follow 

from its definition and can be employed in simplifying calculations. 

 

Scaling and shifting 

If Y aX b  , where a and b are arbitrary constants, then 

                             t aX btY tb taX bt

Y XM t E e E e e E e e M at
           

  

 

                                                    bt

Y XM t e M at                                         (3.72) 

 

This result is often useful for obtaining the central moments of a distribution. If the 

MFG of X is  XM t  then the variable Y X    has the MGF    t

Y XM t e M t , 

which clearly generates the central moments of X, i.e. 

 

                                 
0

0
n

n nn t

Y Xn

t

d
E X E Y M e M t

dt

 



 
              

 
           (3.73) 

 

Sums of random variables 

If 
1 2, , , NX X X  are independent random variables and 1 2N NS X X X     then  

                                  1 2

0

NN i

N

N
t X X XtS tX

S

i

M t E e E e E e
  



 
         

 
   

Since the iX  are independent, 
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                                           
1 1

i

N i

N N
tX

S X

i i

M t E e M t
 

                                  (3.74) 

 

In words, the MGF of the sum of N independent random variables is the product of 

their individual MGFs. By combining (3.74) with (3.72), we obtain the more general 

result that the MGF of 
1 1 2 2N N NS c X c X c X     (where the 

ic  are constants) is given 

by 

                                                    
1

N i

N

S X i

i

M t M c t


                                     (3.75) 

 

Uniqueness 

If the MGF of the random variable 
1X  is identical to that for 

2X  then the 

probability distributions of 
1X  and 

2X  are identical. This is intuitively reasonable 

although a rigorous proof is complicated, and beyond the scope of this course. 

 


