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Chapter 2. Counting techniques 

Bibliografie: Riley et al. (2006) 

 

In the previous chapter we defined the probability of an event A in a sample 

space S as 

                                                            Pr A

S

n
A

n
                                            (2.1) 

where An  is the number of outcomes belonging to event A and Sn  is the total number 

of possible outcomes. It is therefore necessary to be able to count the number of 

possible outcomes in various common situations. 

 

2.1 Permutations 

Let us first consider a set of n objects that are all different. We may ask in 

how many ways these n objects may be arranged, i.e. how many permutations of 

these objects exist. This is straightforward to deduce: the object in the first position 

may be chosen in n different ways, that in the second position in 1n  ways, and so 

on until the final object is positioned. The number of possible arrangements is 

therefore 

                                                   1 2 2 1 !n n n n                                      (2.2) 

Let us suppose we choose only  k n  objects from n. The number of possible 

permutations of these k objects selected from n is given by 

                                          
 

 factors

!
1 2 1

!

k

n

k

n
n n n n k A

n k
     


                    (2.3) 

In calculating the number of permutations of the various objects we have so 

far assumed that the objects are sampled without replacement – i.e. once an object 

has been drawn from the set it is put aside. However, we may instead replace each 

object before the next is chosen. The number of permutations of k objects from n 

with replacement may be calculated very easily since the first object can be chosen 

in n different ways, as can the second, the third, etc. Therefore the number of 

permutations is simply kn . This may also be viewed as the number of permutations 
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of k objects from n where repetitions are allowed, i.e. each object may be used as 

often as one likes. 

 

Exercise 1. Find the probability that in a group of k people at least two have the 

same birthday (ignoring 29 February). 

It is simplest to begin by calculating the probability that no two people share 

a birthday, as follows. Firstly, we imagine each of the k people in turn pointing to 

their birthday on a year planner. Thus, we are sampling the 365 days of the year 

‘with replacement’ and so the total number of possible outcomes is  365
k
. Now (for 

the moment) we assume that no two people share a birthday and imagine the process 

being repeated, except that as each person points out their birthday it is crossed off 

the planner. In this case, we are sampling the days of the year ‘without replacement’, 

and so the possible number of outcomes for which all the birthdays are different is 

                                                    
 

365

365!

365 !

kA
k




  

Hence the probability that all the birthdays are different is 

                                                   
 

365!

365 !365k
p

k



 

Using the complement rule, the probability q that two or more people have the same 

birthday is simply 

                                          
 

365!
1 1

365 !365k
q p

k
   


  

This expression may be conveniently evaluated using Stirling’s 

approximation for !n  when n is large, namely 

                                                       ! 2

n
n

n n
e


 

  
 

  

                    
365

365
365! 2 365

e


 
  

 
        

                       
365

365
365 ! 2 365

k
k

k k
e




 

    
 
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   

365 365
365! 2 365 365 1

365 !365 365 3652 365

k

k k

e
p

k e kk







   
     

    
 

                
365 365 0.5

365 365 365

365 365 365

k k

k ke e
k k k

  

    
    

     
  

                                               
365 0.5

365
1

365

k

kq e
k

 

  
   

 
  

If 23k   the probability is a little greater than 1/ 2  that at least two people have the 

same birthday, and if 50k   the probability rises to 0.970. 

 

 

So far we have assumed that all n objects are different (or distinguishable). 

Let us now consider n objects of which 1n  are identical and of type 1, 2n  are identical 

and of type 2, . . . , mn  are identical and of type m ( 1 2 mn n n n    ). From (2.2) the 

number of permutations of these n objects is again !n . However, the number of 

distinguishable permutations is only 

                                                         
1 2

!

! ! !m

n

n n n
                                            (2.4) 

since the i-th group of identical objects can be rearranged in !in  ways without 

changing the distinguishable permutation. 

 

Exercise 2. A set of snooker balls consists of a white, a yellow, a green, a brown, a 

blue, a pink, a black and 15 reds. How many distinguishable permutations of the 

balls are there? 

In total there are 22 balls, the 15 reds being indistinguishable. Thus from (2.4) 

the number of distinguishable permutations is 

                                      
        

22! 22!
859 541 760

1! 1! 1! 1! 1! 1! 1! 15! 15!
    
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2.2 Combinations 

We now consider the number of combinations of various objects when their 

order is immaterial. Assuming all the objects to be distinguishable, the number of 

permutations of k objects chosen from n is  !/ !k

nA n n k  .  

Now, since we are no longer concerned with the order of the chosen objects, 

which can be internally arranged in !k  different ways, the number of combinations 

of k objects from n is 

                                            
 

!

! !

k

n

n
C

n k k



    for    0 k n                             (2.5) 

k

nC  is called the binomial coefficient since it also appears in the binomial expansion  

                                                  
0

n
n k k n k

n

k

a b C a b 



                                        (2.6) 

 

Exercise 3. A hand of 13 playing cards is dealt from a well-shuffled pack of 52. 

What is the probability that the hand contains two aces? 

Since the order of the cards in the hand is immaterial, the total number of 

distinct hands is simply equal to the number of combinations of 13 objects drawn 

from 52, i.e. 13

52C . However, the number of hands containing two aces is equal to the 

number of ways, 2

4C , in which the two aces can be drawn from the four available, 

multiplied by the number of ways, 11

48C , in which the remaining 11 cards in the hand 

can be drawn from the 48 cards that are not aces. Thus the required probability is 

given by 

                                  
2 11

4 48

13

52

4! 48! 13!39!
0.213

2!2! 11!37! 52!

C C

C
      

 

BASIC PRINCIPLE OF COUNTING: Suppose that two experiments are to be 

performed. Then if experiment 1 can result in any one of m possible outcomes and 

if, for each outcome of experiment 1, there are n possible outcomes of experiment 

2, then together there are mn  possible outcomes of the two experiments. 
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Another useful result is the number of ways in which n distinguishable objects 

can be divided into m piles, with in  objects in the i-th pile, 1,2, ,i m   (the ordering 

of objects within each pile being unimportant). We may choose the 1n  objects in the 

first pile from the original n objects in 1n

nC  ways. The 2n  objects in the second pile 

can then be chosen from the 1n n  remaining objects in 2

1

n

n nC   ways, etc. We may 

continue in this fashion until we reach the  1m -th pile, which may be formed in 

1

1 2

m

m

n

n n nC 

    ways. The remaining objects then form the m-th pile and so can only be 

‘chosen’ in one way. Thus the total number of ways of dividing the original n objects 

into m piles is given by the product 

                                             11 2

1 1 2
1m

m

nn n

n n n n n nN C C C 

        

           
 

 

 

 

 

 

 
1 1 2 1 2

1 1 2 1 2 3 1 2 3 1 1 2 1

! ! !!

! ! ! ! ! ! ! !

m

m m m

n n n n n n n nn

n n n n n n n n n n n n n n n n n



  

    


        
  

           
   1 2 3 1

!

! ! ! ! !m m

n

n n n n n

                                                                    (2.7) 

These numbers are called multinomial coefficients since (2.7) is the coefficient of 

1 2

1 2
mnn n

mx x x  in the multinomial expansion of  1 2

n

mx x x   . Furthermore, we note 

that the multinomial coefficient (2.7) is identical to the expression (2.4) for the 

number of distinguishable permutations of n objects, in  of which are identical and 

of type i (for 1,2, ,i m  and 1 2 mn n n n    ).  

 

Exercise 4. In the card game of bridge, each of four players is dealt 13 cards from a 

full pack of 52. What is the probability that each player is dealt an ace? 

From (2.7), the total number of distinct bridge dealings is 
52!

13!13!13!13!
 ( 52n   

cards, 4 piles with 13 cards). The number of ways in which the four aces can be 

distributed with one in each hand is 
4!

4!
1!1!1!1!

 ; the remaining 48 cards can be dealt 

out in 
48!

12!12!12!12!
 ways. Thus the probability that each player receives an ace is 

                                                 
   

4 4

48! 52!
4! / 0.105

12! 13!
   
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As in the case of permutations we might ask how many combinations of k 

objects can be chosen from n with replacement (repetition). To calculate this, we 

may imagine the n (distinguishable) objects set out on a table. Each combination of 

k objects can then be made by pointing to k of the n objects in turn (with repetitions 

allowed). These k equivalent selections distributed amongst n different but re-

choosable objects are strictly analogous to the placing of k indistinguishable ‘balls’ 

in n different boxes with no restriction on the number of balls in each box. A 

particular selection in the case 7k  , 5n   may be symbolised as 

                                                        xxx x xx x   

This denotes three balls in the first box, none in the second, one in the third, two in 

the fourth and one in the fifth. We therefore need only consider the number of 

(distinguishable) ways in which k crosses and 1n  vertical lines can be arranged, i.e. 

the number of permutations of 1k n   objects of which k are identical crosses and 

1n  are identical lines. This is given by (2.4) as 

                                                    
 

  1

1 !

! 1 !

k

n k

k n
C

k n
 

 



                                    (2.8) 

 

 

Exercise 5. A system contains a number N of (non-interacting) particles, each of 

which can be in any of the quantum states of the system. The structure of the set of 

quantum states is such that there exist R energy levels with corresponding energies 

iE  and degeneracies ig  (i.e. the i-th energy level contains ig  quantum states). Find 

the numbers of distinct ways in which the particles can be distributed among the 

quantum states of the system such that the i-th energy level contains in  particles, for 

1,2, ,i R , in the cases where the particles are:  

(i) distinguishable with no restriction on the number in each state; 

(ii) indistinguishable with no restriction on the number in each state; 

(iii) indistinguishable with a maximum of one particle in each state; 

(iv) distinguishable with a maximum of one particle in each state. 
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It is easiest to solve this problem in two stages. First consider distributing the 

N particles among the R energy levels, without regard for the individual degenerate 

quantum states that comprise each level. If the particles are distinguishable then the 

number of distinct arrangements with in  particles in the i-th level, 1,2, ,i R , is 

given by (2.7) as 

                                                           
1 2

!

! ! !R

N

n n n
  

If the particles are indistinguishable then clearly there exists only one distinct 

arrangement having in  particles in the i-th level, 1,2, ,i R . If we suppose that there 

exist iw  ways in which the in  particles in the i-th energy level can be distributed 

among the ig  degenerate states, then it follows that the number of distinct ways in 

which the N particles can be distributed among all R energy levels of the system, 

with in  particles in the i-th level, is given by 

                               
11 2

1

!
 for distinguishable particles

! ! !

 for indistinguishable particles

R

i

iR

i R

i

i

N
w

n n n
W n

w









 







         (2.9) 

It therefore remains only to find the appropriate expression for iw  in each of the 

cases (i)–(iv) above. 

Case (i). If there is no restriction on the number of particles in each quantum 

state, then in the i-th energy level each particle can reside in any of the ig  degenerate 

quantum states. Thus, if the particles are distinguishable then the number of distinct 

arrangements is simply in

i iw g  . Thus, from (2.9), 

                                          
1 11 2

!
!

! ! ! !

i

i

nR R
n i

i i

i iR i

gN
W n g N

n n n n 

     

Such a system of particles (for example atoms or molecules in a classical gas) is said 

to obey Maxwell–Boltzmann statistics. 

Case (ii). If the particles are indistinguishable and there is no restriction on 

the number in each state then, from (2.8), the number of distinct arrangements of the 

in  particles among the ig  states in the i-th energy level is 
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 

 

1 !

! 1 !

i i

i

i i

n g
w

n g

 



  

Substituting this expression in (2.9), we obtain 

                                                   
 

 1

1 !

! 1 !

R
i i

i

i i i

n g
W n

n g

 



  

Such a system of particles (for example a gas of photons) is said to obey Bose–

Einstein statistics. 

Case (iii). If a maximum of one particle can reside in each of the ig  degenerate 

quantum states in the i-th energy level then the number of particles in each state is 

either 0 or 1. Since the particles are indistinguishable, iw  is equal to the number of 

distinct arrangements in which in  states are occupied and i ig n  states are 

unoccupied; this is given by 

                                                    
 

!

! !
i

i

n i
i g

i i i

g
w C

n g n
 


  

Thus, from (2.9), we have 

                                                    
 1

!

! !

R
i

i

i i i i

g
W n

n g n




  

Such a system is said to obey Fermi–Dirac statistics, and an example is provided by 

an electron gas. 

Case (iv). Again, the number of particles in each state is either 0 or 1. If the 

particles are distinguishable, each arrangement identified in case (iii) can be 

reordered in !in  different ways, so that 

                                              
 

!

!
i

i

n i
i g

i i

g
w A

g n
 


  

Substituting this expression into (2.9) gives 

                        
   1 11 2

! !!
!

! ! ! ! ! !

R R
i i

i

i iR i i i i i

g gN
W n N

n n n g n n g n 

 
 

    

Such a system of particles has the names of no famous scientists attached to it, since 

it appears that it never occurs in nature. 
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 Chapter 3  Random variables and distributions 

Bibliografie: Riley et al. (2006) 

 

Suppose an experiment has an outcome sample space S. A real variable X that 

is defined for all possible outcomes in S (so that a real number is assigned to each 

possible outcome) is called a random variable (RV).  

                                                            :X S    

The outcome of the experiment may already be a real number and hence a 

random variable, e.g. the number of heads obtained in 10 throws of a coin, or the 

sum of the values if two dice are thrown. However, more arbitrary assignments are 

possible, e.g. the assignment of a ‘quality’ rating to each successive item produced 

by a manufacturing process. 

Assuming that a probability can be assigned to all possible outcomes in a 

sample space S, it is possible to assign a probability distribution to any random 

variable. Random variables may be divided into two classes, discrete and 

continuous, and we now examine each of these in turn.      

 

3.1 Discrete random variables 

A random variable X that takes only discrete values 1 2, , , nx x x  with 

probabilities 1 2, , , np p p  is called a discrete random variable. The number of values 

n for which X has a non-zero probability is finite or at most countably infinite. An 

example of a discrete random variable is the number of heads obtained in 10 throws 

of a coin. If X is a discrete random variable, we can define a probability function 

(PF)  f x  that assigns probabilities to all the distinct values that X can take, such 

that   

                                              
 if 

Pr
0 otherwise

i ip x x
f x X x


   


                          (3.1) 

A typical PF (see figure 3.1) thus consists of spikes, at valid values of X, whose 

height at x corresponds to the probability that X x . Since the probabilities must 

sum to unity, we require   
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                                                      
1

1
n

i

i

f x


                                              (3.2) 

We may also define the cumulative probability function (CPF) of X,  F x , whose 

value gives the probability that X x , so that               

                                               Pr
i

i

x x

F x X x f x


                                   (3.3) 

 

Figura 3.1 (a) A typical probability function for a discrete distribution, that for the 

biased die discussed earlier (exercise 4, chapter 1). (b) The cumulative probability 

function for the same discrete distribution. 

 

Hence  F x  is a step function that has upward jumps of ip  at ix x , 1,2, ,i n  , and 

is constant between possible values of X. We may also calculate the probability that 

X lies between two limits, 1l  and 2l  ( 1 2l l ); this is given by 

                                         
1 2

1 2 2 1Pr
i

i

l x l

l X l f x F l F l
 

                         (3.4) 

i.e. it is the sum of all the probabilities for which ix  lies within the relevant interval. 

 

Exercise 1. A bag contains six red balls and four blue balls. Three balls are drawn 

at random and not replaced. Find the probability function for the number of red balls 

drawn. 

Let X be the number of red balls drawn. Then 
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                                              
4 3 2 1

Pr 0 0
10 9 8 30

X f      

                                              
4 3 6 3

Pr 1 1 3
10 9 8 10

X f      

                                              
4 6 5 1

Pr 2 2 3
10 9 8 2

X f      

                                               
6 5 4 1

Pr 3 3
10 9 8 6

X f     

It should be noted that  
3

0

1
i

f i


  . 

 

3.2 Continuous random variables 

A random variable X is said to have a continuous distribution if X is defined 

for a continuous range of values between given limits (often −∞ to ∞). An example 

of a continuous random variable is the height of a person drawn from a population, 

which can take any value (within limits!). We can define the probability density 

function (PDF)  f x  of a continuous random variable X such that 

                                                Pr x X x dx f x dx                                      (3.5) 

i.e.  f x dx  is the probability that X lies in the interval x X x dx   . Clearly  f x  

must be a real function that is everywhere ≥ 0.  

If X can take only values between the limits 1l  and 2l  then, in order for the sum 

of the probabilities of all possible outcomes to be equal to unity, we require 

                                                         
2

1

1

l

l

f x dx                                                (3.6) 

Often X can take any value between −∞ and ∞ and so 

                                                          1f x dx





                                              (3.7) 

The probability that X lies in the interval a X b   is then given by 
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                                                   Pr

b

a

a X b f x dx                                       (3.8) 

i.e.  Pr a X b   is equal to the area under the curve of  f x  between these limits 

(see figure 3.2). 

 

Figure 3.2  Pr a X b   

 

We may also define the cumulative probability function  F x  for a continuous 

random variable by 

                                        
1

Pr

x

l

F x X x f u du                                  (3.9) 

where u is a (dummy) integration variable. We can then write 

                                                  Pr a X b F b F a                                    (3.10) 

From (3.9) it is clear that 
 

 
dF x

f x
dx

   

 

Exercise 2. A random variable X has a PDF  f x  given by xAe  in the interval 

0 x   and zero elsewhere. Find the value of the constant A and hence calculate 

the probability that X lies in the interval 1 2X  . 

We require the integral of  f x  between 0 and ∞ to equal unity.  
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0

0

x xAe dx Ae A




      

and hence 1A . From (3.8), we then obtain  

                                 
2 2

1 2

1 1

Pr 1 2 0.23xX f x dx e dx e e            

 

3.3 Sets of random variables 

It is common in practice to consider two or more random variables 

simultaneously. For example, one might be interested in both the height and weight 

of a person drawn at random from a population. In the general case, these variables 

may depend on one another and are described by joint probability density functions. 

We note that if we have two random variables X and Y then we define their joint 

probability density function  ,f x y  in such a way that, if X and Y are discrete RVs, 

                                               Pr , ,i j i jX x Y y f x y   ,                               (3.11) 

or, if X and Y are continuous RVs, 

                                  Pr  ,  ,  x X x dx y Y y dy f x y dx dy                        (3.12) 

In many circumstances, however, random variables do not depend on one another, 

i.e. they are independent. As an example, for a person drawn at random from a 

population, we might expect height and IQ to be independent random variables. Let 

us suppose that X and Y are two random variables with probability density functions 

 g x  and  h y  respectively. In mathematical terms, X and Y are independent RVs if 

their joint probability density function is given by      ,f x y g x h y . Thus, for 

independent RVs, if X and Y are both discrete then 

                                              Pr ,i j i jX x Y y g x h y                                   (3.13) 

or, if X and Y are both continuous, then 

                                 Pr  ,   x X x dx y Y y dy g x h y dx dy                        (3.14) 

The important point in each case is that the RHS is simply the product of the 

individual probability density functions (compare with the expression  
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     Pr Pr PrA B A B   for statistically independent events A and B). The above 

discussion may be extended to any number of independent RVs iX , 1,2, ,i N .  

 

Exercise 3. The independent random variables X and Y have the PDFs   xg x e  and 

  22 yh y e  respectively. Calculate the probability that X lies in the interval 1 2X     

and Y lies in the interval 0 1Y   . 

Since X and Y are independent RVs, the required probability is given by 

                                     
2 1

1 0

Pr 1 2,0 1X Y g x dx h y dy         

                        
2 1

2 1
2 2 1 2 2

1 0
1 0

2 1 0.2x y x ye dx e dy e e e e e                   

 

 

3.4 Properties of distributions 

For a single random variable X, the probability density function  f x  contains 

all possible information about how the variable is distributed. However, for the 

purposes of comparison, it is useful to characterize  f x  by certain of its properties. 

Most of these standard properties are defined in terms of averages or expectation 

values. In the most general case, the expectation value  E g X    of any function 

 g X  of the random variable X is defined as 

 

                       
   

   

 for a discrete distribution

 for a continuous distribution

i i

i

g x f x

E g X

g x f x dx




   






              (3.15) 

 

where the sum or integral is over all allowed values of X. It is assumed that the series 

is absolutely convergent or that the integral exists. From its definition it is 

straightforward to show that the expectation value has the following properties: 
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(i) if a is a constant then  E a a ; 

(ii) if a is a constant then    E ag X aE g X       ; 

(iii) if      g X s X t X    then      E g X E s X E t X             

It should be noted that the expectation value is not a function of X but is 

instead a number that depends on the form of the probability density function  f x  

and the function  g X . Most of the standard quantities used to characterize  f x  are 

simply the expectation values of various functions of the random variable X. We 

now consider these standard quantities. 

 

3.4.1 Mean 

The property most commonly used to characterise a probability distribution is 

its mean, which is defined simply as the expectation value  E X  of the variable X 

itself. Thus, the mean is given by 

                                  
 

 

 for a discrete distribution

 for a continuous distribution

i i

i

x f x

E X

xf x dx




 






                 (3.16) 

The alternative notations μ and x  are also commonly used to denote the mean. If 

in (3.16) the series is not absolutely convergent, or the integral does not exist, we 

say that the distribution does not have a mean, but this is very rare in physical 

applications. 

 

Exercise 4. The probability of finding a 1s electron in a hydrogen atom in a given 

infinitesimal volume dV is dV  , where the quantum mechanical wavefunction ψ 

is given by 

                                                         0/r a
Ae 

   

Find the value of the real constant A and thereby deduce the mean distance of the 

electron from the origin. 

Let us consider the random variable R = ‘distance of the electron from the 

origin’. Since the 1s orbital has no θ- or φ-dependence (it is spherically symmetric), 
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we may consider the infinitesimal volume element dV as the spherical shell with 

inner radius r and outer radius r dr . Thus, 24dV r dr  and the PDF of R is simply 

                                        02 /2 2Pr 4
r a

r R r dr f r dr r A e dr 
       

                                                      02 /2 24
r a

f r r A e 
  

The value of A is found by requiring the total probability (i.e. the probability that the 

electron is somewhere) to be unity. Since R must lie between zero and infinity, we 

require that 

                                              02 /2 2

0

4 1
r a

A e r dr



   

Integrating by parts we find 

                                              02 /2 2

0

4 1
r a

A r e dr



  

                                        2u r               0

2r

a
dv e dr



       

                                       2du rdr           0

2

0

2

r

aa
v e



   

                                    0 0

2 2

2 20
0

00

4 1
2

r r

a aa
A r e ra e dr


  

   
 
 

   

                                              u r               0

2r

a
dv e dr



       

                                            du dr            0

2

0

2

r

aa
v e



   

                                       0 0

2 2

2 0 0
0

00

4 1
2 2

r r

a aa a
A a re e dr


  

   
 
 

  

                                             0

2

2 0 0
0

0

4 1
2 2

r

aa a
A a e


 

  
 
 
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                                         2 3

0 1 0 1A a            
3

0

1
A

a
   

                                                      0

22

3

0

4

r

ar
f r e

a



   

Now, using the definition of the mean (3.16), we find 

                                             0

23

3

00 0

4

r

ar
E R rf r dr e dr

a

  

     

                                                 0

2

3

3

0 0

4
r

a
E R r e dr

a

 

   

                                        3u r                0

2r

a
dv e dr



       

                                       23du r dr           0

2

0

2

r

aa
v e



   

                          0 0 0

2 2 2

3 2 20 0 0

3 3

0 00 00

3 34 4

2 2 2

r r r

a a aa a a
E R r e r e dr r e dr

a a


    

    
 
 

   

                              0 0 0

2 2 2

0
02

0 0 00 0 0

6 6 6

2

r r r

a a aa
E R ra e dr re dr e dr

a a a

    

       

                                     0

2

0 0 0

0

3 3
3 0 1

2 2 2

r

aa a a
E R e


 

      
 
 

 

 

3.4.2 Mode and median 

Although the mean discussed in the last section is the most common measure 

of the ‘average’ of a distribution, two other measures, which do not rely on the 

concept of expectation values, are frequently encountered. 

The mode of a distribution is the value of the random variable X at which the 

probability (density) function  f x  has its greatest value. If there is more than one 

value of X for which this is true then each value may equally be called the mode of 

the distribution. 
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The median M of a distribution is the value of the random variable X at which 

the cumulative probability function  F x  takes the value 1/2, i.e.  
1

2
F M  . Related 

to the median are the lower and upper quartiles lQ  and uQ  of the PDF, which are 

defined such that 

                                            
1

4
lF Q   ,         

3

4
uF Q                                    (3.17) 

Thus the median and lower and upper quartiles divide the PDF into four regions each 

containing one quarter of the probability. Smaller subdivisions are also possible, e.g. 

the n-th percentile, nP , of a PDF is defined by   /100nF P n . 

 

Exercise 5. Find the mode of the PDF for the distance from the origin of the electron 

whose wave function was given in the previous example. 

We found in the previous example that the PDF for the electron’s distance 

from the origin was given by 

                                                       0

22

3

0

4

r

ar
f r e

a



                                           (3.18) 

Differentiating  f r  with respect to r, we obtain 

                                   0 0 0

2 2 2

2

3 3

0 0 0 0

4 2 8
2 1

r r r

a a adf r r
re r e e

dr a a a a

     
       

  

  

Thus  f r  has turning points at 0r   and 0r a , where / 0df dr  . It is 

straightforward to show that 0r   is a minimum and 0r a  is a maximum. Thus the 

mode of  f r  occurs at 0r a . 

 

3.4.3 Variance and standard deviation 

The variance of a distribution,  V X , also written 2 , is defined by 
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               
   

   

2

2

2

 for a discrete distribution

  for a continuous distribution

j j

j

x f x

V X E X

x f x dx







 
     
 






  (3.19)   

 

Here μ has been written for the expectation value  E X  of X. From the definition 

(3.19) we may easily derive the following useful properties of   V X  . If a and b are 

constants then 

(i)   0V a    

(ii)    2V aX b a V X    

The variance of a distribution is always positive; its positive square root is known as 

the standard deviation of the distribution and is often denoted by σ. Roughly 

speaking, σ measures the spread (about x  ) of the values that X can assume. 

 

Exercise 6. Find the standard deviation of the PDF for the distance from the origin 

of the electron whose wavefunction was discussed in the previous two examples. 

Inserting the expression (3.18) for the PDF  f r  into (3.19), the variance of 

the random variable R is given by 

                              0 0

2 22
2 4 3 2 2

3 3

0 00 0

4
4 2

r r

a ar
V R r e dr r r r e dr

a a
  

  

      , 

where   03 / 2E R a    . Integrating each term in the integrand by parts we obtain 

                                                      2

0

3

4
V R a   

Thus the standard deviation of the distribution is 03 / 2a   . 

 

We may also use the definition (3.19) to derive the Chebyshev inequality, 

which provides a useful upper limit on the probability that random variable X takes 

values outside a given range centred on the mean. Let us consider the case of a 

continuous random variable, for which 
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                                               Pr
x c

X c f x dx



 

      

where the integral on the RHS extends over all values of x satisfying the inequality 

x c  . From (3.19), we find that 

                                 
2 22 2

x c x c

x f x dx x f x dx c f x dx
 

  
   

         

                                              2 Prc X c                                                (3.20) 

The first inequality holds because both  
2

x   and  f x  are non-negative for all x, 

and the second inequality holds because  
2 2x c   over the range of integration. 

However, the RHS of (3.20) is simply equal to  2 Prc X c  , and thus we obtain 

the required inequality 

                                                        
2

2
Pr X c

c


                                    (3.21) 

A similar derivation may be carried through for the case of a discrete random 

variable. Thus, for any distribution  f x  we have, for example, 

                                  
1

Pr 2
4

X                  
1

Pr 3
9

X      

 

Exercise 7  Suppose that it is known that the number of items produced in a factory 

during a week is a random variable with mean 50. If the variance of a week’s 

production is known to equal 25, then what can be said about the probability that 

this week’s production will be between 40 and 60? 

Let X be the number of items that will be produced in a week:                                 

By Chebyshev’s inequality   
2

2

1
50 10

10 4
P X


      

Hence  
1 3

50 10 1
4 4

P X                                         

and so the probability that this week’s production will be between 40 and 60 is at 

least 0.75. 


