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In order to learn about something, you must first collect data. 

 Statistics is the art of learning from data.  

It is concerned with the collection of data, its description, and its analysis, which 

often leads to the drawing of conclusions. Statistics is concerned with the analysis of 

real experimental data. First, we discuss probability. To a mathematician, probability 
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is an entirely theoretical subject based on axioms. This axiomatic approach is 

important, and we discuss it briefly. 

We begin our discussion with the terminology required, with particular 

reference to the convenient graphical representation of experimental results as Venn 

diagrams. The concepts of random variables and distributions of random variables 

are then introduced. We assert that the results of many experiments are random 

variables and that those results have some sort of regularity, which is represented by 

a distribution. Precise definitions of a random variable and a distribution are then 

given, as are the defining equations for some important distributions. We also derive 

some useful quantities associated with these distributions: mean, variance, moments. 

 

Chapter 1 Probability  
Bibliografie: Riley et al. (2006) 

 

1.1 Venn diagrams 

We call a single performance of an experiment a trial and each possible result 

an outcome. The sample space S of the experiment is then the set of all possible 

outcomes of an individual trial. For example, if we throw a six-sided die then there 

are six possible outcomes that together form the sample space of the experiment. At 

this stage we are not concerned with how likely a particular outcome might be, but 

rather will concentrate on the classification of possible outcomes. Some sample 

spaces are finite (e.g. the outcomes of throwing a die) whilst others are infinite (e.g. 

the outcomes of measuring people’s heights). Most often, one is not interested in 

individual outcomes but in whether an outcome belongs to a given subset A (say) of 

the sample space S; these subsets are called events. For example, we might be 

interested in whether a person is taller or shorter than 180 cm, in which case we 

divide the sample space into just two events: namely, that the outcome (height 

measured) is (i) greater than 180 cm or (ii) less than 180 cm. 

A common graphical representation of the outcomes of an experiment is the 

Venn diagram. A Venn diagram usually consists of a rectangle, the interior of which 

represents the sample space, together with one or more closed curves inside it. The 

interior of each closed curve then represents an event. Figure 1.1 shows a typical 

Venn diagram representing a sample space S and two events A and B. Every possible 

outcome is assigned to an appropriate region; in this example there are four regions 

to consider, marked i to iv in figure 1.1. 
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Figure 1.1 

 

(i) outcomes that belong to event A but not to event B; 

(ii) outcomes that belong to event B but not to event A; 

(iii) outcomes that belong to both event A and event B; 

(iv) outcomes that belong to neither event A nor event B. 

 

Exercise 1. A six-sided die is thrown. Let event A be ‘the number obtained is odd’ 

and event B be ‘the number obtained is divisible by 3’. Draw a Venn diagram to 

represent these events. 

It is clear that the outcomes 1, 3, 5 belong to event A and that the outcomes 3, 6 

belong to event B. Of these, 3 belongs to both A and B. The remaining outcomes, 2, 

4, belong to neither A nor B. The appropriate Venn diagram is shown in figure 1.2. 

 

Figure 1.2 
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In the above example, one outcome, 3, is divisible by 3 and is odd, and so 

belongs to both A and B. This outcome is placed in region iii of figure 1.1, which is 

called the intersection of A and B and is denoted by A B  (see figure 1.3(a)). If no 

events lie in the region of intersection then A and B are said to be mutually exclusive 

or disjoint. An event that contains no outcomes is called the empty event and denoted 

by ∅.  

The event comprising all the elements that belong to either A or B, or to both, 

is called the union of A and B and is denoted by A B  (see figure 1.3(b)). In the 

previous example,  1,3,5,6A B  .  

It is sometimes convenient to talk about those outcomes that do not belong to 

a particular event. The set of outcomes that do not belong to A is called the 

complement of A and is denoted by A  (see figure 1.3(c)); this can also be written as 

A S A  . It is clear that A A S   and A A  . The above notation can be 

extended in an obvious way, so that A B  denotes the outcomes in A that do not 

belong to B. It is clear from figure 1.3(d) that A B  can also be written as A B . 

 Finally, when all the outcomes in event B (say) also belong to event A, but A 

may contain, in addition, outcomes that do not belong to B, then B is called a subset 

of A, a situation that is denoted by B A . In this case, the closed curve representing 

the event B is often drawn lying completely within the closed curve representing the 

event A. 

 

Figure 1.3 
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The operations   and   are extended straightforwardly to more than two 

events. If there exist n events 
1 2, , , nA A A  in some sample space S, then the event 

consisting of all those outcomes that belong to one or more of the 
iA  is the union of 

1 2, , , nA A A  and is denoted by 

                                                      1 2 nA A A                                             (1.1) 

Similarly, the event consisting of all the outcomes that belong to every one of the 
iA  

is called the intersection of 
1 2, , , nA A A  and is denoted by 

                                                       1 2 nA A A                                            (1.2) 

If, for any pair of values ,i j  with i j   

                                                             i jA A                                            (1.3) 

then the events 
iA  are said to be mutually exclusive or disjoint.  

 

Consider three events A, B and C with a Venn diagram such as is shown in 

figure 1.4. It will be clear that, in general, the diagram will be divided into eight 

regions and they will be of four different types. Three regions correspond to a single 

event; three regions are each the intersection of exactly two events; one region is the 

three-fold intersection of all three events; and finally one region corresponds to none 

of the events.  

 

Figure 1.4 
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Let us now consider the numbers of different regions in a general n-event 

Venn diagram. 

For one-event Venn diagrams there are two regions, for the two-event case 

there are four regions and, as we have just seen, for the three-event case there are 

eight. In the general n-event case there are 2n  regions. 

The 2n  regions will break down into 1n  types, with the numbers of each type 

as follows 

                                                no events,           0 1nC    

                one event but no intersections,           1

nC n   

                             two-fold intersections,           
 2

1

2
n

n n
C


   

                           three-fold intersections,           
  3

1 2

3!
n

n n n
C

 
   

                             an n-fold intersection,        1n

nC   

 

That this makes a total of 2n  can be checked by considering the binomial expansion 

                           
    1 1 2

2 1 1 1 1
2 3!

nn
n n n n n

n
  

          

 

The operations   and   obey the following algebraic laws: 

 

commutativity,    A B B A    , A B B A    

associativity,          A B C A B C      ,    A B C A B C      

distributivity,           A B C A B A C       , 

                                 A B C A B A C       

idempotency,      A A A   , A A A    
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From Venn diagrams, it is simple to show that the following rules hold: 

(i) If A B  then A B   

(ii) A B A B                                                                                      (1.4) 

(iii) A B A B     

Statements (ii) and (iii) are known jointly as de Morgan’s laws. 

 

Exercise 2. There exist two events A and B such that 

                                                      X A X A B      

Find an expression for the event X in terms of A and B. 

We begin by taking the complement of both sides of the above expression: 

applying de Morgan’s laws we obtain 

                                                      B X A X A      

We may then use the algebraic laws obeyed by   and   to yield 

                                                B X A A X X        

Thus, we find X B  . 

 

1.2 Probability 

Venn diagrams are graphical representations of the possible outcomes of 

experiments. Moreover, how likely each outcome or event might be in any particular 

experiment? Most experiments show some regularity: the relative frequency of an 

event is approximately the same on each occasion that a set of trials is performed. 

For example, if we throw a die N times then we expect that a six will occur 

approximately N/6 times. The regularity of outcomes allows us to define the 

probability, Pr(A), as the expected relative frequency of event A in a large number 

of trials. If an experiment has a total of 
sn  outcomes in the sample space S, and 

An  

of these outcomes correspond to the event A, then the probability that event A will 

occur is 

                                                         Pr A

S

n
A

n
                                               (1.5) 
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1.2.1 Axioms and theorems 

From (1.5) we may deduce the following properties of the probability  Pr A . 

(i) For any event A in a sample space S, 

                                        0 Pr 1A                                               (1.6) 

If  Pr 1A   then A is a certainty; if  Pr 0A   then A is an impossibility. 

(ii) For the entire sample space S we have 

                                           Pr 1S

S

n
S

n
                                          (1.7) 

which simply states that we are certain to obtain one of the possible 

outcomes. 

(iii) If A and B are two events in S then, from the Venn diagrams in figure 1.3, 

we see that 

                                      A B A B A Bn n n n                                        (1.8) 

the final subtraction arising because the outcomes in the intersection of A 

and B are counted twice when the outcomes of A are added to those of B. 

Dividing both sides of (1.8) by 
sn , we obtain the addition rule for 

probabilities 

                                   Pr Pr Pr PrA B A B A B                        (1.9) 

If A and B are mutually exclusive events A B  , then  Pr 0A B   and 

we obtain the special case 

                                          Pr Pr PrA B A B                              (1.10) 

(iv) If A  is the complement of A then A  and A are mutually exclusive events. 

Thus, from (1.7) and (1.10) we have 

                                     1 Pr Pr Pr PrS A A A A       

from which we obtain the complement law 

                                               Pr 1 PrA A                                  (1.11) 

 

Exercise 3. Calculate the probability of drawing an ace or a spade from a pack of 

cards. 

Let A be the event that an ace is drawn and B the event that a spade is drawn.  
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It follows that  
4 1

Pr
52 13

A    and  
13 1

Pr
52 4

B   . The intersection of A and B 

consists of only the ace of spades and so  
1

Pr
52

A B  . 

                               
1 1 1 4

Pr Pr Pr Pr
13 4 52 13

A B A B A B          

In this case it is just as simple to recognise that there are 16 cards in the pack that 

satisfy the required condition (13 spades plus three other aces) and so the probability 

is 16/52. 

 

The above theorems can easily be extended to a greater number of events. For 

example, if 
1 2, , , nA A A  are mutually exclusive events then (1.10) becomes 

                                   1 2 1 2Pr Pr Pr Prn nA A A A A A                    (1.12) 

 

Exercise 4. A biased six-sided die has probabilities 
1

2
p , 

1

3
p , 

1

3
p , 

1

3
p , p, 2p of 

showing 1, 2, 3, 4, 5, 6 respectively. Calculate p. 

Given that the individual events are mutually exclusive, (1.12) can be applied to give 

                       
1 1 1 1 9

Pr 1 2 3 4 5 6 2
2 3 3 3 2

p p p p p p p              

The union of all possible outcomes is clearly the sample space, S, and so 

                                        
9

Pr
2

S p     
(1.7)

    
9

1
2

p           
2

9
p    

 

When the possible outcomes of a trial correspond to more than two events, 

and those events are not mutually exclusive, the calculation of the probability of the 

union of a number of events is more complicated, and the generalisation of the 

addition law (1.9) requires further work. Let us begin by considering the union of 

three events 
1A , 

2A  and 
3A , which need not be mutually exclusive. We first define 

the event 2 3B A A   and, using the addition law (1.9), we obtain 
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                                1 2 3 1 1 1Pr Pr Pr Pr PrA A A A B A B A B                (1.13) 

                            1 1 2 3Pr PrA B A A A       

                                  1 2 1 3Pr A A A A       

                                   1 2 1 3 1 2 3Pr Pr PrA A A A A A A                           (1.14) 

Substituting this expression (1.14), and that for  Pr B  obtained from (1.9), into 

(1.13) we obtain the probability addition law for three general events, 

                             1 2 3 1 2 3 2 3Pr Pr Pr Pr PrA A A A A A A A          

                                        1 2 1 3 1 2 3Pr Pr PrA A A A A A A                      (1.15) 

 

Exercise 5. Calculate the probability of drawing from a pack of cards one that is an 

ace or is a spade or shows an even number (2, 4, 6, 8, 10).  

If A is the event that an ace is drawn,  
4

Pr
52

A  . Similarly the event B, that a 

spade is drawn, has  
13

Pr
52

B  . The possibility C, that the card is even (but not a 

picture card) has  
20

Pr
52

C  . The two-fold intersections have probabilities 

                            
1

Pr
52

A B   ,     Pr 0A C   ,     
5

Pr
52

B C    

 There is no three-fold intersection as events A and C are mutually exclusive. Hence          

                 
1 31

Pr 4 13 20 1 0 5 0
52 52

A B C              

 

The probability for the union of the n general events, which may be proved 

by induction upon n, is 

                                     1 2

,

Pr Pr Prn i i j

i i j

A A A A A A         

                                        
1

1 2

, ,

Pr 1 Pr
n

i j k n

i j k

A A A A A A


              (1.16) 
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Each summation runs over all possible sets of subscripts, except those in which any 

two subscripts in a set are the same. The number of terms in the summation of 

probabilities of m-fold intersections of the n events is given by m

nC  (as discussed in 

section 1.1). We now illustrate this result with a worked example that has 4n   and 

includes a four-fold intersection. 

 

Exercise 6. Find the probability of drawing from a pack a card that has at least one 

of the following properties: 

               A, it is an ace; 

               B, it is a spade; 

               C, it is a black honour card (ace, king, queen, jack or 10); 

               D, it is a black ace. 

Measuring all probabilities in units of 1/52, the single-event probabilities are 

                         Pr 4A   ,     Pr 13B   ,    Pr 10C   ,     Pr 2D    

The two-fold intersection probabilities, measured in the same units, are 

                         Pr 1A B   ,      Pr 2A C   ,        Pr 2A D   

                         Pr 5B C  ,       Pr 1B D  ,         Pr 2C D   

The three-fold intersections have probabilities 

         Pr 1A B C    ,   Pr 1A B D   ,   Pr 2A C D   ,   Pr 1B C D    

Finally, the four-fold intersection, requiring all four conditions to hold, is satisfied 

only by the ace of spades, and hence (again in units of 1/52) 

                                                 Pr 1A B C D      

Substituting in (1.16) gives       

                    
1 20

4 13 10 2 1 2 2 5 1 2 1 1 2 1 1
52 52

P                     
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We conclude this section on basic theorems by deriving a useful general 

expression for the probability  Pr A B  that two events A and B both occur in the 

case where A (say) is the union of a set of n mutually exclusive events 
iA . In this 

case 

                                       1 2 nA B A B A B A B          

where the events iA B  are also mutually exclusive. Thus, from the addition law 

(1.12) for mutually exclusive events, we find 

                                                 Pr Pr i

i

A B A B                                     (1.17) 

Moreover, in the special case where the events 
iA  exhaust the sample space S, we 

have A B S B B    , and we obtain the total probability law 

                                                   Pr Pr i

i

B A B                                        (1.18) 

 

1.2.2 Conditional probability 

So far we have defined only probabilities of the form ‘what is the probability 

that event A happens?’. In this section we turn to conditional probability, the 

probability that a particular event occurs given the occurrence of another, possibly 

related, event. For example, we may wish to know the probability of event B, 

drawing an ace from a pack of cards from which one has already been removed, 

given that event A, the card already removed was itself an ace, has occurred.  

We denote this probability by  Pr B A  and may obtain a formula for it by 

considering the probability    Pr PrA B B A    that both A and B will occur. This 

may be written in two ways, i.e. 

                                             Pr Pr PrA B A B A   

                                                           Pr PrB A B  

From this we obtain 

                                                   
 

 

Pr
Pr

Pr

A B
A B

B


                                  (1.19) 
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                                                    
 

 

Pr
Pr

Pr

B A
B A

A


                                 (1.20) 

In terms of Venn diagrams, we may think of  Pr B A  as the probability of B in the 

reduced sample space defined by A. Thus, if two events A and B are mutually 

exclusive then 

                                                       Pr 0 PrA B B A                               (1.21) 

When an experiment consists of drawing objects at random from a given set 

of objects, it is termed sampling a population. We need to distinguish between two 

different ways in which such a sampling experiment may be performed. After an 

object has been drawn at random from the set it may either be put aside or returned 

to the set before the next object is randomly drawn. The former is termed ‘sampling 

without replacement’, the latter ‘sampling with replacement’. 

 

Exercise 7. Find the probability of drawing two aces at random from a pack of cards 

(i) when the first card drawn is replaced at random into the pack before the second 

card is drawn, and (ii) when the first card is put aside after being drawn. 

Let A be the event that the first card is an ace, and B the event that the second 

card is an ace. Now 

                                                   Pr Pr PrA B A B A   

and for both (i) and (ii) we know that  
4 1

Pr
52 13

A   . 

(i) If the first card is replaced in the pack before the next is drawn then 

     
4 1

Pr Pr
52 13

B A B    since A and B are independent events. We then 

have 

                                              
1 1 1

Pr Pr Pr
13 13 169

A B A B      

(ii) If the first card is put aside and the second then drawn, A and B are not 

independent and  
3

Pr
51

B A   , with the result that  
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                               
1 3 1

Pr Pr Pr
13 51 221

A B A B A        

 

 

Two events A and B are statistically independent if    Pr PrA B A  (or 

equivalently if    Pr PrB A B ) In words, the probability of A given B is then the 

same as the probability of A regardless of whether B occurs. For example, if we 

throw a coin and a die at the same time, we would normally expect that the 

probability of throwing a six was independent of whether a head was thrown. If A 

and B are statistically independent then 

                                                         Pr Pr PrA B A B                             (1.22)  

 

In fact (1.22) may be regarded as the definition of the statistical independence of 

two events. 

 

We now derive two results that often prove useful when working with 

conditional probabilities. Let us suppose that an event A is the union of n mutually 

exclusive events 
iA . If B is some other event then from (1.17) we have 

 

                                                 Pr Pr i

i

A B A B    

Dividing both sides of this equation by  Pr B  and using (1.19), we obtain 

 

                                                    Pr Pr i

i

A B A B                                      (1.23) 

 

which is the addition law for conditional probabilities. 

 

Furthermore, if the set of mutually exclusive events 
iA  exhausts the sample 

space S then, from the total probability law (1.18), the probability  Pr B  of some 

event B in S can be written as 

 

                                      Pr Pr Pr Pri i i

i i

B A B A B A                   (1.24) 

 

 

Exercise 10. A collection of traffic islands connected by a system of one-way roads 

is shown in figure 1.5. At any given island a car driver chooses a direction at random 
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from those available. What is the probability that a driver starting at O will arrive at 

B? 

 

In order to leave O the driver must pass through one of 
1A , 

2A , 
3A  or 

4A , which 

thus form a complete set of mutually exclusive events. Since at each island 

(including O) the driver chooses a direction at random from those available, we have 

that  
1

Pr
4

iA   , for 1,2,3,4i   From figure 1.5, we see also that 

                     1

1
Pr

3
B A   ,   2

1
Pr

3
B A   ,   3Pr 0B A   ,   4

2 1
Pr

4 2
B A    

Thus, using the total probability law (1.24), we find that the probability of arriving 

at B is given by 

 

                                     
1 1 1 1 7

Pr Pr Pr 0
4 3 3 2 24

i i

i

B A B A
 

      
 

  

 

 
 

Figure 1.5 A collection of traffic islands connected by one-way roads. 

 

 

1.2.3 Bayes’ theorem 

In the previous section we saw that the probability that both an event A and a 

related event B will occur can be written either as    Pr PrA B A  or    Pr PrB A B . 

Hence 

 

                                                    Pr Pr Pr PrA B A B A B  
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from which we obtain Bayes’ theorem, 

 

                                                 
 

 
 

Pr
Pr Pr

Pr

A
A B B A

B
                             (1.25) 

 

This theorem clearly shows that    Pr PrB A A B , unless    Pr PrA B . It is 

sometimes useful to rewrite  Pr B , if it is not known directly, as 

 

                                                  Pr Pr Pr Pr PrB A B A A B A    

 

so that Bayes’ theorem becomes 

 

                                      
   

       
Pr Pr

Pr
Pr Pr Pr Pr

A B A
A B

A B A A B A



                (1.26) 

 

Exercise 9: Suppose that the blood test for some disease is reliable in the following 

sense: for people who are infected with the disease the test produces a positive result 

in 99.99% of cases; for people not infected a positive test result is obtained in only 

0.02% of cases. Furthermore, assume that in the general population one person in 

10000 people is infected. A person is selected at random and found to test positive 

for the disease. What is the probability that the individual is actually infected? 

 

Let A be the event that the individual is infected and B be the event that the 

individual tests positive for the disease. Using Bayes’ theorem the probability that a 

person who tests positive is actually infected is 

 

                                      
   

       
Pr Pr

Pr
Pr Pr Pr Pr

A B A
A B

A B A A B A



 

Now,    
1

Pr 1 Pr
10000

A A     

and we are told that  
9999

Pr
10000

B A   and  
2

Pr
10000

B A  . Thus we obtain 

 

                                  

1 9999

110000 10000Pr
1 9999 9999 2 3

10000 10000 10000 10000

A B



 

  
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Thus, there is only a one in three chance that a person chosen at random, who tests 

positive for the disease, is actually infected. 

At a first glance, this answer may seem a little surprising, but the reason for 

the counterintuitive result is that the probability that a randomly selected person is 

not infected is 9999/10000, which is very high. Thus, the 0.02% chance of a positive 

test for an uninfected person becomes significant.  

 

We note that (1.26) may be written in a more general form if S is not simply 

divided into A and A  but, rather, into any set of mutually exclusive events Ai that 

exhaust S. Using the total probability law (1.24), we may then write 

 

                                         Pr Pr Pri i

i

B A B A  

 

so that Bayes’ theorem takes the form 

 

                                              
   
   

Pr Pr
Pr

Pr Pri i

i

A B A
A B

A B A



                            (1.27) 

where the event A need not coincide with any of the Ai. 

 

Exercise 10: An insurance company believes that people can be divided into two 

classes — those that are accident prone and those that are not. Their statistics show 

that an accident-prone person will have an accident at some time within a fixed 1-

year period with probability 0.4, whereas this probability decreases to 0.2 for a non-

accident-prone person. If we assume that 30 percent of the population is accident 

prone, what is the probability that a new policy holder will have an accident within 

a year of purchasing a policy? 

 

We obtain the desired probability by first conditioning on whether or not the 

policy holder is accident prone. Let 
1A  denote the event that the policy holder will 

have an accident within a year of purchase; and let A denote the event that the policy 

holder is accident prone. Hence, the desired probability,  1P A , is given by 

                                                 1 1 1P A P A P A A P A P A A    

                                                  0.3 0.4 0.7 0.2 0.26          
 

Exercise 11: Reconsider the example with the insurance company and suppose that 

a new policy holder has an accident within a year of purchasing his policy. What is 

the probability that he is accident prone? 
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Initially, at the moment when the policy holder purchased his policy, we 

assumed there was a 30 percent chance that he was accident prone. That is, 

  0.3P A  . However, based on the fact that he has had an accident within a year, we 

now reevaluate his probability of being accident prone as follows: 

 

                               
 

 

   
 

11

1

1 1

0.3 0.4
0.4615

0.26

P A P A AP A A
P A A

P A P A

 
             

 

                          

Exercise 12: Twins can either be identical or fraternal. Identical, also called 

monozygotic, twins form when a single fertilized egg splits into two genetically 

identical parts. Consequently, identical twins always have the same set of genes. 

Fraternal, also called dizygotic, twins develop when two separate eggs are fertilized 

and implant in the uterus. The genetic connection of fraternal twins is no more or 

less the same as siblings born at separate times. A Los Angeles county scientist 

wishing to know the current fraction of twin pairs born in the county that are identical 

twins has assigned a county statistician to study this issue. The statistician initially 

requested each hospital in the county to record all twin births, indicating whether the 

resulting twins were identical or not. The hospitals, however, told her that to 

determine whether newborn twins were identical was not a simple task, as it involved 

the permission of the twins’s parents to perform complicated and expensive DNA 

studies that the hospitals could not afford. After some deliberation, the statistician 

just asked the hospitals for data listing all twin births along with an indication as to 

whether the twins were of the same sex. When such data indicated that 

approximately 64 percent of twin births were same-sexed, the statistician declared 

that approximately 28 percent of all twins were identical. How did she come to this 

conclusion? 

 

The statistician reasoned that identical twins are always of the same sex, 

whereas fraternal twins, having the same relationship to each other as any pair of 

siblings, will have probability ½ of being of the same sex. Letting I be the event that 

a pair of twins are identical, and SS be the event that a pair of twins are of the same 

sex, she computed the probability  P SS  by conditioning on whether the twin pair 

was identical. This gave 

                                                 P SS P SS I P I P SS I P I                                           

                                                
1 1 1

1 1
2 2 2

P SS P I P I P I         

which, using that   0.64P SS   yielded the result   0.28P I   


