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11.7 MULTIPLE LINEAR REGRESSION 

 

In the majority of applications, the response of an experiment can be predicted 

more adequately not on the basis of a single independent input variable but on a 

collection of such variables. A typical situation is one in which there are a set of, 

say, k input variables and the response Y is related to them by the relation 

 

                                           
0 1 1 2 2 k kY x x x e                                   (11.70) 

 

where 
jx , 1,2, ,j k  is the level of the jth input variable and e is a random error 

that we shall assume is normally distributed with mean 0 and constant variance 2 . 

The parameters 
0 1, , , k    and 2  are assumed to be unknown and must be 

estimated from the data, which are the values of 
1 2, , , nY Y Y  where 

iY  is the response 

level corresponding to the k input levels 
1 2, , ,i i ikx x x . The 

iY  are related to these input 

levels through 

                                              0 1 1 2 2i i i k ikE Y x x x                             (11.71) 

 

If we let 
0 1, , , kB B B  denote estimators of 

0 1, , , k   , then the sum of the squared 

differences between the 
iY  and their estimated expected values is 
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The least squares estimators are those values of 
0 1, , , kB B B  that minimize the 

foregoing. To determine the least squares estimators, we repeatedly take partial 

derivatives of the preceding sum of squares first with respect to 
0B , then to 

1B , . . . , 

then to 
kB . On equating these 1k   equations to 0, we obtain the following set of 

equations: 
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Rewriting these equations yields that the least squares estimators 
0 1, , , kB B B  satisfy 

the following set of linear equations, called the normal equations: 
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Before solving the normal equations, it is convenient to introduce matrix notation. 

If we let 
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Then Y  is an 1n , X  an  1n k  , β  an  1 1k    and e  is an 1n  matrix. 

The multiple regression model can now be written as 

           

                                                         Y Xβ e                                             (11.76) 

In addition, if we let 
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be the matrix of least squares estimators, then the normal Equations (11.74) can be 

written as 

                                                        T TX XB X Y                                         (11.78) 

where T
X  is the transpose of X . 
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To see that Equation (11.78) is equivalent to the normal Equations (11.74), 

note that 
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It is now easy to see that the matrix equation 

 

                                                        T TX XB X Y                                        (11.79) 

 

is equivalent to the set of normal Equations (11.74). Assuming that  
1

T


X X  exists, 

which is usually the case, we obtain, upon multiplying it by both sides of the 

foregoing, that the least squares estimators are given by 

 

                                                        
1

T T

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Program R computes the least squares estimates. 
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Example 1 The data in Table relate the suicide rate to the population size and the 

divorce rate at eight different locations. 

 

Location Population in  

Thousands 

Divorce Rate per 100000 Suicide Rate per 100000 

Akron 

Anaheim 

Buffalo 

Austin 

Chicago 

Columbia  

Detroit 

Gary 

679 

1420 

1349 

296 

6975 

323 

4200 

633 

30.4 

34.1 

17.2 

26.8 

29.1 

18.7 

32.6 

32.5 

11.6 

16.1 

9.3 

9.1 

8.4 

7.7 

11.3 

8.4 

 

Fit a multiple linear regression model to these data. That is, fit a model of the form 

 
                                                   

0 1 1 2 2Y x x e         

 

where Y is the suicide rate, 
1x  is the population, and 

2x  is the divorce rate. 

 

We run R, and results are shown. 

 
> Y<-c(11.6,16.1,9.3,9.1,8.4,7.7,11.3,8.4) 
> x1<-c(679,1410,1349,296,6975,323,4200,633) 
> x2<-c(30.4,34.1,17.2,26.8,29.1,18.7,32.6,32.5) 
> model1<-lm(Y~x1+x2) 
> summary(model1) 
 
Call: 
lm(formula = Y ~ x1 + x2) 
 
Residuals: 
      1       2       3       4       5       6       7       8  
 0.3269  4.0431  1.6386 -1.3288 -0.9678 -0.6081  0.3285 -3.4326  
 
Coefficients: 
              Estimate Std. Error t value Pr(>|t|) 
(Intercept)  3.5079307  4.3566394   0.805    0.457 
x1          -0.0002487  0.0004287  -0.580    0.587 
x2           0.2609870  0.1587762   1.644    0.161 
 
Residual standard error: 2.612 on 5 degrees of freedom 
Multiple R-squared:  0.3531, Adjusted R-squared:  0.09441  
F-statistic: 1.365 on 2 and 5 DF,  p-value: 0.3365 

Thus the estimated regression line is 

                                         1 23.507 0.0002 0.2609Y x x     
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The value of 
1  indicates that the population does not play a major role in predicting 

the suicide rate (at least when the divorce rate is also given). Perhaps the population 

density, rather than the actual population, would have been more useful. 

> model2<-lm(Y~x2) 
> summary(model2) 
 
Call: 
lm(formula = Y ~ x2) 
 
Residuals: 
    Min      1Q  Median      3Q     Max  
-2.9835 -1.2412 -0.2565  0.9241  4.3364  
 
Coefficients: 
            Estimate Std. Error t value Pr(>|t|) 
(Intercept)   3.6642     4.1009   0.894    0.406 
x2            0.2375     0.1448   1.640    0.152 
 
Residual standard error: 2.463 on 6 degrees of freedom 
Multiple R-squared:  0.3096, Adjusted R-squared:  0.1945  
F-statistic: 2.691 on 1 and 6 DF,  p-value: 0.1521 

 

                                                
23.6642 0.2375Y x    

 

EXAMPLE 2 A recently completed study attempted to relate job satisfaction to 

income (in 1,000S) and seniority for a random sample of 9 municipal workers. The 

job satisfaction value given for each worker is his or her own assessment of such, 

with a score of 1 being the lowest and 10 being the highest. The following data 

resulted. 

Yearly Income Years on the Job Job Satisfaction 

52 

47 

59 

53 

61 

64 

58 

67 

71 

8 

4 

12 

9 

16 

14 

10 

15 

22 

5.6 

6.3 

6.8 

6.7 

7.0 

7.7 

7.0 

8.0 

7.8 

 

(a) Estimate the regression parameters. 
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(b) What qualitative conclusions can you draw about how job satisfaction changes 

when income remains fixed and the number of years of service increases? 

(c) Predict the job satisfaction of an employee who has spent 5 years on the job and 

earns a yearly salary of $56,000. 

> JobS<-c(5.6,6.3,6.8,6.7,7.0,7.7,7.0,8.0,7.8) 
> YIncome<-c(52,47,59,53,61,64,58,67,71) 
> yJob<-c(8,4,12,9,16,14,10,15,22) 
> model<-lm(JobS~YIncome+yJob) 
> summary(model) 
 
Call: 
lm(formula = JobS ~ YIncome + yJob) 
 
Residuals: 
     Min       1Q   Median       3Q      Max  
-0.71365 -0.05968  0.04694  0.13145  0.34478  
 
Coefficients: 
            Estimate Std. Error t value Pr(>|t|)   
(Intercept) -1.20499    2.35109  -0.513    0.627   
YIncome      0.16195    0.05512   2.938    0.026 * 
yJob        -0.11283    0.08001  -1.410    0.208   
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
Residual standard error: 0.3692 on 6 degrees of freedom 
Multiple R-squared:  0.8263, Adjusted R-squared:  0.7684  
F-statistic: 14.27 on 2 and 6 DF,  p-value: 0.005239 
 

                    JobS 1.2049 0.1619 YIncome - 0.1128 yJob       

 
> mmodel<-lm(JobS~YIncome) 
> summary(mmodel) 
 
Call: 
lm(formula = JobS ~ YIncome) 
 
Residuals: 
    Min      1Q  Median      3Q     Max  
-0.7627 -0.1791  0.1090  0.2806  0.3775  
 
Coefficients: 
            Estimate Std. Error t value Pr(>|t|)    
(Intercept)  1.78396    1.08695   1.641  0.14475    
YIncome      0.08805    0.01825   4.824  0.00191 ** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
Residual standard error: 0.3944 on 7 degrees of freedom 
Multiple R-squared:  0.7688, Adjusted R-squared:  0.7357  
F-statistic: 23.27 on 1 and 7 DF,  p-value: 0.001913 

 

                                      JobS 1.7839 0.088 YIncome    
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Chapter 12 ANALYSIS OF VARIANCE 

 

Bibliography: Sheldon Ross 

 

12.1 INTRODUCTION 

 

A large company is considering purchasing one of four different computer 

packages designed to teach a new programming language. Some influential people 

within this company have claimed that these packages are basically interchangeable 

in that the one chosen will have little effect on the final competence of its user.  

To test this hypothesis the company has decided to choose 160 of its 

engineers, and divide them into 4 groups of size 40. Each member in group i will 

then be given teaching package i, 1,2,3,4i  , to learn the new language. When all the 

engineers complete their study, a comprehensive exam will be given. The company 

then wants to use the results of this examination to determine whether the computer 

teaching packages are really interchangeable or not.  

We clearly desire to be able to conclude that the teaching packages are indeed 

interchangeable when the average test scores in all the groups are similar and to 

conclude that the packages are essentially different when there is a large variation 

among these average test scores.  

The method of division of the 160 engineers into 4 groups is of vital 

importance. For example, suppose that the members of the first group score 

significantly higher than those of the other groups. What can we conclude from this? 

Specifically, is this result due to teaching package 1 being a superior teaching 

package, or is it due to the fact that the engineers in group 1 are just better learners? 

It is essential that we divide the 160 engineers into the 4 groups in such away to 

make it extremely unlikely that one of these groups is inherently superior. The time 

tested method for doing this is to divide the engineers into 4 groups in a completely 

random fashion. That is, we should do it in such a way so that all possible divisions 

are equally likely; for in this case, it would be very unlikely that any one group would 

be significantly superior to any other group. So let us suppose that the division of 

the engineers was indeed done “at random.” (Whereas it is not at all obvious how 

this can be accomplished, one efficient procedure is to start by arbitrarily numbering 

the 160 engineers. Then generate a random permutation of the integers 1,2, ,160  

and put the engineers whose numbers are among the first 40 of the permutation into 

group 1, those whose numbers are among the 41st through the 80th of the 

permutation into group 2, and so on.) 
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It is reasonable to suppose that the test score of a given individual should be 

approximately a normal random variable having parameters that depend on the 

package from which he was taught. Also, it is probably reasonable to suppose that 

whereas the average test score of an engineer will depend on the teaching package 

she was exposed to, the variability in the test score will result from the inherent 

variation of 160 different people and not from the particular package used. Thus, if 

we let 
ijX , 1, , 4i  , 1, , 40j  , denote the test score of the jth engineer in group i, 

a reasonable model might be to suppose that the 
ijX  are independent random 

variables with ijX  having a normal distribution with unknown mean 
i  and unknown 

variance 2 . The hypothesis that the teaching packages are interchangeable is then 

equivalent to the hypothesis that 
1 2 3 4       . 

In this course, we present a technique that can be used to test such a 

hypothesis. It is known as the analysis of variance. This technique we use when all 

the explanatory variables are categorical. The explanatory variables are call factors, 

and each factor has two or more levels.  

 

 

12.2. An Overview 

 

Tests concerning multiple population means will be considered. The 

difference between the populations results from different levels of a factor. In next 

Section, we suppose that we have been provided samples of size n from m distinct 

populations and that we want to use these data to test the hypothesis that the m 

population means are equal. Since the mean of a random variable depends only on 

a single factor, this scenario is said to constitute a one way analysis of variance.  

In some cases there are two factors that determine the mean value of a 

variable. Such a model is called a two-way analysis of variance.  

 

In all of the models considered in this course, we assume that the data are 

normally distributed with the same (although unknown) variance 2 . The idea of 

analysis of variance (ANOVA) is to compare two or more means by comparing 

variances. The analysis of variance approach for testing a null hypothesis 
0H  

concerning the population means is based on deriving two estimators of the common 

variance 2 . The first estimator is a valid estimator of 2  whether the null 

hypothesis is true or not, while the second one is a valid estimator only when 
0H  is 

true. In addition, when 
0H  is not true this latter estimator will tend to exceed 2 . The 

test will be to compare the values of these two estimators, and to reject 
0H  when the 

ratio of the second estimator to the first one is sufficiently large. In other words, 
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since the two estimators should be close to each other when 
0H  is true (because they 

both estimate 2  in this case) whereas the second estimator should tend to be larger 

than the first when 
0H  is not true, it is natural to reject 

0H  when the second estimator 

is significantly larger than the first. 

 

We will obtain estimators of the variance 2  by making use of certain facts 

concerning chi-square random variables. Suppose that 
1 2, , , NX X X  are independent 

normal random variables having possibly different means but a common variance 
2 , and let  i iE X  , 1,2, ,i N . Since the variables 

 

                                              /i i iZ X     ,     1,2, ,i N                          (12.1) 

 

have standard normal distributions, it follows from the definition of a chi-square 

random variable that 
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is a chi-square random variable with N degrees of freedom. Now, suppose that each 

of the values 
i , 1,2, ,i N , can be expressed as a linear function of a fixed set of k 

unknown parameters. Suppose, further, that we can determine estimators of these k 

parameters, which thus gives us estimators of the mean values 
i . If we let ˆ

i  denote 

the resulting estimator of 
i , 1,2, ,i N , then it can be shown that the quantity 
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2
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i

X 
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
                                          (12.3) 

 

will have a chi-square distribution with N k  degrees of freedom. 

In other words, we start with 
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X E X
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
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which is a chi-square random variable with N degrees of freedom. If we now write 

each  iE X  as a linear function of k parameters and then replace each of these 

parameters by its estimator, then the resulting expression remains chi-square but 

with a degree of freedom that is reduced by 1 for each parameter that is replaced by 

its estimator. 
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For an illustration of the preceding, consider the case where all the means are 

known to be equal; that is, 

 

                                                     iE X   ,  1,2, ,i N                             (12.5) 

 

Thus 1k  , because there is only one parameter that needs to be estimated. 

Substituting X , the estimator of the common mean μ, for 
i  in Equation (12.2), 

results in the quantity 

                                                          
 

2

2
1

N
i

i

X X




                                          (12.6) 

 

and the conclusion is that this quantity is a chi-square random variable with 1N   

degrees of freedom. But in this case where all the means are equal, it follows that 

the data 
1 2, , , NX X X  constitute a sample from a normal population, and thus 

Equation (12.6) is equal to   2 21 /N S  , where S2 is the sample variance. In other 

words, the conclusion in this case is just the well-known result that   2 21 /N S   is 

a chi-square random variable with 1N   degrees of freedom.    

 

 

12.3 ONE-WAY ANALYSIS OF VARIANCE 

 

Consider m independent samples, each of size n, where the members of the i-

th sample —
1 2, ,i i inX X X  — are normal random variables with unknown mean 

i  

and unknown variance 2 . That is,  

 

                                       2,ij iX N   ,    1,2, ,i m ,   1,2, ,j n              (12.7) 

 

We will be interested in testing 

 

                                                    
0 1 2: mH                                         (12.8) 

versus 
                                                1 :  not all the means are equalH   

 

We will be testing the null hypothesis that all the population means are equal against 

the alternative that at least two of them differ.  

One way of thinking about this is to imagine that we have m different 

treatments, where the result of applying treatment i on an item is a normal random 



11 
 

variable with mean 
i  and variance 2 . We are then interested in testing the 

hypothesis that all treatments have the same effect, by applying each treatment to a 

different sample of n items and then analyzing the result. 

Since there are a total of n m  independent normal random variables 
ijX , it 

follows that the sum of the squares of their standardized versions will be a chi-square 

random variable with nm  degrees of freedom. That is, 

 

                                 
2 2

2 2 2

1 1 1 1

/ /
m n m n

ij ij ij i nm

i j i j

X E X X   
   

                 (12.9) 

 

To obtain estimators for the m unknown parameters 
1 2, , , m   , let 

iX  denote the 

average of all the elements in sample i; that is, 

 

                                                       
1

/
n

i ij

j

X X n


                                          (12.10) 

 

The variable 
iX  is the sample mean of the i-th population, and as such is the 

estimator of the population mean 
i , for 1, ,i m . Hence, if in Equation (12.9) we 

substitute the estimators 
iX  for the means 

i , for 1, ,i m , then the resulting 

variable 
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2
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1 1

/
m n

ij i
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X X 
 
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will have a chi-square distribution with nm m  degrees of freedom. (1 degree of 

freedom is lost for each parameter that is estimated.) Let 

 

                                                     
2

1 1

m n

W ij i

i j

SS X X
 

                                 (12.12) 

 

and so the variable in Equation (12.11) is 2/WSS  . Because the expected value of a 

chi square random variable is equal to its number of degrees of freedom, it follows 

upon taking the expectation of the variable in (12.11) that 

 

                                                       2/WE SS nm m                                  (12.13) 

or, equivalently, 

                                                       2/WE SS nm m                                 (12.14) 
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We thus have our first estimator of 2 , namely,  /WSS nm m . Note that this 

estimator was obtained without assuming anything about the truth or falsity of the 

null hypothesis. 

 

Definition The statistic 

                                                     
2

1 1

m n

W ij i

i j

SS X X
 

                                 (12.15) 

 

is called the within samples sum of squares because it is obtained by substituting the 

sample population means for the population means in expression (12.9). The statistic 

 

                                                           /WSS nm m                                      (12.16) 

is an estimator of 2 . 

 

Our second estimator of 2  will only be a valid estimator when the null 

hypothesis is true. So let us assume that 
0H  is true and so all the population means 

i  are equal, say, 
i   for all i. Under this condition it follows that the m sample 

means
1 2, , , mX X X  will all be normally distributed with the same mean μ and the 

same variance 2 / n . Hence, the sum of squares of the m standardized variables 

 

                                                    
2

/
/

i
i

X
n X

n


 




                             (12.17) 

 

will be a chi-square random variable with m degrees of freedom. That is, when 
0H  

is true, 

                                                 
2 2 2

1

/
m

i m

i

n X   


                                 (12.18) 

 

Now, when all the population means are equal to μ, then the estimator of μ is the 

average of all the nm  data values. That is, the estimator of μ is X , given by 

 

                                                 1 1 1

m n m

ij i
i j i

X X

X
nm m

   

 
                               (12.19) 

 

If we now substitute X  for the unknown parameter μ, in (12.18) it follows, when 

0H  is true, that the resulting quantity 
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                                                      
2 2

1

/
m

i

i

n X X 


                                (12.20) 

 

will be a chi-square random variable with 1m  degrees of freedom. That is, if we 

define 
bSS  by 

                                                  
2

1

m

b i

i

SS n X X


                                   (12.21) 

 

then it follows that, when 
0H  is true, 2/bSS   is chi-square with 1m  degrees of 

freedom. 

From the above we obtain that when 
0H  is true, 

 

                                                   2/ 1bE SS m                                        (12.22) 

or, equivalently, 

                                                   2/ 1bE SS m                                       (12.23) 

 

So, when 
0H  is true,  / 1bSS m  is also an estimator of 2 . 

 

Definition The statistic 

                                                 
2

1

m

b i

i

SS n X X


                                   (12.24) 

 

is called the between samples sum of squares. When 
0H  is true,  / 1bSS m  is an 

estimator of 2 . 

 

Thus we have shown that 

 

                                      /WSS nm m      allways estimates 2   

                                       / 1bSS m         estimates 2  when 
0H  is true 

 

Because it can be shown that  / 1bSS m  will tend to exceed 2  when 
0H  is not true, 

it is reasonable to let the test statistic be given by 

 

                                                   
 

 

/ 1

/

b

W

SS m
TS

SS nm m





                                  (12.25) 
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and to reject 
0H  when TS is sufficiently large. 

 

To determine how large TS needs to be to justify rejecting 
0H , we use the fact 

that it can be shown that if 
0H  is true then 

bSS  and 
WSS  are independent. It follows 

from this that, when 
0H  is true, TS has an F-distribution with 1m  numerator and 

nm m  denominator degrees of freedom.  

Let 
1, ,m nm mF  

 denote the  100 1   percentile of this distribution — that is, 

 

                                                 1, 1, ,m nm m m nm mP F F                                   (12.26) 

 

where we are using the notation ,r sF  to represent an F-random variable with r 

numerator and s denominator degrees of freedom. 

 

The significance level α test of 
0H  is as follows: 

 

                               Reject     
0H      if      

 

  1, ,

/ 1

/

b

m nm m

W

SS m
F

SS nm m
 





            (12.27) 

                               Do not reject    
0H      otherwise 

 

A table of values of , ,0.05r sF  for various values of r and s is presented in Tables in 

statistic books. Part of these tables is presented in Table 1. For instance, from Table 

1 we see that there is a 5 percent chance that an F-random variable having 3 

numerator and 10 denominator degrees of freedom will exceed 3.71. 

 

 

s=Degrees of freedom 

for the Denominator 

r= Degrees of freedom for the Numerator 

1               2               3             4 

4 

5 

10 

7.71         6.94           6.59        6.39 

6.61         5.79           5.41        5.19 

4.96         4.10           3.71        3.48 

Table 1 

 

 

Another way of doing the computations for the hypothesis test that all the 

population means are equal is by computing the p-value. If the value of the test 

statistic is TS v  , then the p-value will be given by  
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                                                   1,value Pr m nm mp F v                               (12.28) 

 

 

Example  An auto rental firm is using 15 identical motors that are adjusted to run at 

a fixed speed to test 3 different brands of gasoline. Each brand of gasoline is assigned 

to exactly 5 of the motors. Each motor runs on 10 gallons of gasoline until it is out 

of fuel. 

The following represents the total mileages obtained by the different motors: 

 

                                   Gas 1:    220   251   226   246   260 

                                   Gas 2:    244   235   232   242   225 

                                   Gas 3:    252   272   250   238   256 

 

Test the hypothesis that the average mileage obtained is not affected by the type of 

gas used. Use the 5 percent level of significance. 

 

 

The variance in X, the mileage, is large. 

The total sum of squares  
15

2

1i

x x


   

 

 
Instead of fitting the overall mean value thorough the data, let us fit the individual 

treatment means: 
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When the means are significantly different, then the sum of squares computed from 

the individual treatment means will be smaller than the sum of squares computed 

from the overall mean. We judge the significance of the difference between the two 

sums of squares using analysis of variance. 

 
                                   

1 240.6X         
2 235.6X           

3 253.6X    

 

                                
2

1 1

m n

W ij i

i j

SS X X
 

             
2

1

m

b i

i

SS n X X


   

 
                                          1991.6WSS              863.3333bSS    

 

The value of the F-statistic is 

 

                               
 

 

 

 

/ 1 863.3333 / 3 1

/ 1991.
2.

6 / 5 3 3
600924

b

W

SS m
TS

SS nm m

 
  

  
 

 

                 Critical value               2,12,0.05 3.885294F       

 

Since 2.600924 3.885294  the null hypothesis that the mean mileage is the same for 

all 3 brands of gasoline cannot be rejected. 
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Or, p-value is greater than 0.05, the null hypothesis that the mean mileage is the 

same for all 3 brands of gasoline cannot be rejected. 
 
pvalue<- 1-pf(2.600924,df1=2, df2=12) 
> pvalue 
[1] 0.1152489 

 

The procedure performed by R: 

 
summary(aov(date15$Mile~date15$Gas)) 
            Df Sum Sq Mean Sq F value Pr(>F) 
date15$Gas   2  863.3   431.7   2.601  0.115 
Residuals   12 1991.6   166.0      

 

 
summary.lm(aov(date15$Mile~date15$Gas)) 
 
Call: 
aov(formula = date15$Mile ~ date15$Gas) 
 
Residuals: 
   Min     1Q Median     3Q    Max  
 -20.6   -7.1   -0.6    7.4   19.4  
 
Coefficients: 
               Estimate Std. Error t value Pr(>|t|)     
(Intercept)     240.600      5.761  41.761  2.3e-14 *** 
date15$Gasgas2   -5.000      8.148  -0.614    0.551     
date15$Gasgas3   13.000      8.148   1.596    0.137     
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
Residual standard error: 12.88 on 12 degrees of freedom 
Multiple R-squared:  0.3024, Adjusted R-squared:  0.1861  
F-statistic: 2.601 on 2 and 12 DF, p-value: 0.1152 
 

 

The following algebraic identity, called the sum of squares identity, is useful 

when doing the computations by hand. 

 

                                       The Sum of Squares Identity 

 

                                              2 2

1 1

m n

ij b W

i j

X nmX SS SS
 

                                (12.29) 

 

When computing by hand, the quantity 
bSS  defined by 

 

                                                   
2

1

m

b i

i

SS n X X


   
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should be computed first. Once 
bSS  has been computed, 

WSS  can be determined from 

the sum of squares identity. That is, 2

1 1

m n

ij

i j

X
 

  and 2X  should also be computed and 

then 
WSS  determined from 

                                              2 2

1 1

m n

W ij b

i j

SS X nmX SS
 

    

 

Let us do the computations of Example by hand. 

 

                                   Gas 1:    220   251   226   246   260 

                                   Gas 2:    244   235   232   242   225 

                                   Gas 3:    252   272   250   238   256 

 

          3m      5n           
                  

1 240.6X        
2 235.6X            

3 253.6X    

243.2667X        

 

                
2 2 2

5 240.6 243.26 235.6 243.26 253.6 243.26 863.33bSS        
 

  

                         2

1 1

890535
m n

ij

i j

X
 

      

   

              
2

890535 15 243.26 863.33 1991.57WSS       

 

                                                       

Let show that   2/ 1bE SS m      with equality only when 
0H  is true.  

So, we must show that 

 

                                               
2 2

1

/ 1 /
m

i

i

E X X m n


 
   

 
                        (12.30) 

 

with equality only when 
0H  is true. To verify this, let 

1

/
m

i

i

m 


   be the average of 

the means. Also, for 1,2, ,i m , let 

 

                                                       
i i iY X                                           (12.31) 
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Because 
iX  is normal with mean 

i  and variance 2 / n , it follows that 
iY  is normal 

with mean   and variance 2 / n . Consequently, 
1 2, , , mY Y Y  constitutes a sample 

from a normal population having mean   and variance 2 / n . Let 

 

                                             
1

/
m

i

i

Y Y Y m X X 


        

 

be the average of these variables. Now, 

 
                                                   

i i iX X Y Y        

 

                                       
2 2

1 1

m m

i i i

i i

E X X E Y Y  
 

   
       

   
           

 

                                   2 2

1

2
m

i i i i

i

E Y Y Y Y   


 
       

 
    

 

                                    
2 2

1 1 1

2
m m m

i i i i

i i i

E Y Y E Y Y   
  

 
       

 
    

 

                                   
22

1 1

1 / 2
m m

i i i

i i

m n E Y Y    
 

         

 

                                
22

1

1 /
m

i

i

m n  


     

 

where the next to last equality follows because the sample variance 

   
2

1

/ 1
m

i

i

Y Y m


    is an unbiased estimator of its population variance 2 / n  and the 

final equality because       0i iE Y Y E Y E Y        . Dividing by 1m  gives that 

 

                               
2 22

1 1

/ 1 / / 1
m m

i i

i i

E X X m n m  
 

 
      

 
   

 

and the result follows because   
2

1

0
m

i

i

 


   with equality only when all the 
i  are 

equal. 
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Table 2 sums up the results of this section. 

 

TABLE 2 One-Way ANOVA 

Source of Variation Sum of Squares Degrees of 

Freedom 

Value of Test 

Statistic 

Between samples 
 

2

1

m

b i

i

SS n X X


   
1m    

 

/ 1

/

b

W

SS m
TS

SS nm m





 

Within samples 
 

2

1 1

m n

W ij i

i j

SS X X
 

   
nm m    

  

 

Significance level α test: 

                                           Reject  
0H   if  1, ,m nm mTS F     

                                           do not reject otherwise 

 

If TS v  , then  1,value m nm mp P F v    . 

 

 


