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Chapter 11 Linear REGRESSION 
Bibliography: Sheldon Ross 

 

11.1 INTRODUCTION 

Many physical problems are concerned with determining a relationship within 

a set of variables. For instance, we might be interested in the relationship between 

the force for stretching a spring, its temperature and the distance that the spring 

stretches (Hooke's law). Knowledge of such a relationship would enable us to predict 

the output for various values of force and temperature. 

In many situations, there is a single response variable Y, also called the 

dependent variable, which depends on the value of a set of input, also called 

independent, variables 
1 2, , , rx x x . The simplest type of relationship between the 

dependent variable Y and the input variables 
1 2, , , rx x x  is a linear relationship. That 

is, for some constants 
0 1, , , r   , the equation 

 

                                                   
0 1 1 r rY x x                                        (11.1) 

 

would hold. If this was the relationship between Y and the 
ix , 1, ,i r , then it would 

be possible (once the 
i  were learned) to exactly predict the response for any set of 

input values. However, in practice, such precision is almost never attainable, and the 

most that one can expect is that Eq (11.1) would be valid subject to random error. 

By this we mean that the explicit relationship is 

 

                                                
0 1 1 r rY x x e                                      (11.2) 

 

where e, representing the random error, is assumed to be a random variable having 

mean 0. It is convenient to view the input x as controlled by the data analyst and 

measured with negligible error, while the response y is a random variable. That is, 

there is a probability distribution for y at each possible value for x. The mean of this 

distribution is: 

                                             0 1 1 r rE Y x x x                                       (11.3) 

 

where  1 2, , , rx x x x  is the set of independent variables, and E Y x    is the expected 

response given the inputs x.  

Eq (11.2) is called a linear regression equation. The quantities 
0 1, , , r    are 

called the regression coefficients, and must usually be estimated from a set of data.  



2 
 

A regression equation containing a single independent variable — that is, one 

in which 1r    —  is called a simple regression equation, whereas one containing 

many independent variables is called a multiple regression equation. 

Thus, a simple linear regression model supposes a linear relationship between 

the mean response and the value of a single independent variable: 

 

                                              Y x e                                              (11.4) 

 

where x is the value of the independent variable, also called the input level, Y is the 

response, and e, representing the random error, is a random variable having mean 0. 

 

 

Example 1  Consider the following 10 data pairs  ,i ix y , 1,2, ,10i  , relating y, the 

amount of spring stretch (mm) of a laboratory experiment, to x, the force on spring 

(Newtons) at which the experiment was run. 

 

i ix      
iy      i  

ix     
iy   

1 

2 

3 

4 

5 

1.00  45 

1.10  52 

1.20  54 

1.30  63 

1.40  62 

6 

7 

8 

9 

10 

1.50  68 

1.60  75 

1.70  76 

1.80  92 

1.90  88 

 

 

A plot of 
iy  versus 

ix  — called a scatter diagram — is given in Figure 11.1. 

This scatter diagram reflect a linear relation between y and x. It seems that a simple 

linear regression model would be appropriate.  

 
Figure 11.1 Scatter diagram 
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11.2 LEAST SQUARES ESTIMATORS OF THE 

REGRESSION PARAMETERS 

Suppose that the responses 
iY  corresponding to the input values 

ix , 1,2, ,i n   

are to be observed and used to estimate α and β in a simple linear regression model. 

To determine estimators of α and β we reason as follows: If ̂  is the estimator of α 

and ̂  of β, then the estimator of the response corresponding to the input variable 
ix  

would be ˆˆ
ix  . Since the actual response is 

iY , the squared difference is 

 
2

ˆˆ
i iY x   , and so if ̂  and ̂  are the estimators of α and β, then the sum of the 

squared differences between the estimated responses and the actual response 

values—call it SS — is given by 

                                                       
2

1

ˆˆ
n

i i

i

SS Y x 


                                   (11.5) 

 

The method of least squares chooses as estimators of α and β the values of ̂  

and ̂  that minimize SS . To determine these estimators, we differentiate SS  first 

with respect to ̂  and then to ̂  as follows: 

 

                                                      
1

ˆˆ2
ˆ

n

i i

i

SS
Y x 

 


   


                             (11.6) 

                                                      
1

ˆˆ2
ˆ

n

i i i

i

SS
x Y x 

 


   


                         (11.7) 

Setting these partial derivatives equal to zero yields the following equations for 

values ̂  and ̂ : 

                                                       
1 1

ˆˆ
n n

i i

i i

Y n x 
 

                                     (11.8) 

                                                       2

1 1 1

ˆˆ
n n n

i i i i

i i i

x Y x x 
  

                              (11.9) 

If we let 

                                                 
1

/
n

i

i

Y Y n


   ,        
1

/
n

i

i

x x n


   

 

we can write the first equation as 

 

                                                          ˆˆY x                                            (11.10) 

 

which means that the point defined by  ,x Y  is located on the estimated regression 

line.  
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Moreover, 

                                                        ˆˆ Y x                                                (11.11) 

 

Substituting this value of ̂  into the second equation (11.9) yields 

 

                                                  2

1 1

ˆ ˆ
n n

i i i

i i

x Y Y x nx x 
 

     

                                                2 2

1 1

ˆ
n n

i i i

i i

x nx x Y nxY
 

 
   

 
    

                                                      1

2 2

1

ˆ

n

i i

i

n

i

i

x Y nxY

x nx

 












                                       (11.12) 

 

PROPOSITION 1 The least squares estimators of β and α corresponding to the data 

set 
ix , 

iY , 1,2, ,i n  are, respectively,  

 

                                                    1 1

2 2

1

ˆ

n n

i i i

i i

n

i

i

x Y x Y

x nx

  









 


                                     (11.13) 

 

                                                          ˆˆ Y x                                              (11.14) 

 

The straight line ˆˆ x   is called the estimated regression line. 

 

 

In the next, we run R for the data from Example 1 and obtain the regression 

line superimposed on the scatterplot in Figure 11.2. 

 
xi<-c(1.0,1.1,1.2,1.3,1.4,1.5,1.6,1.7,1.8,1.9) 
> Yi<-c(45,52,54,63,62,68,75,76,92,88) 
> model<-lm(Yi~xi) 
> summary(model) 
 
 
Call: 
lm(formula = Yi ~ xi) 
 
Residuals: 
    Min      1Q  Median      3Q     Max  
-3.9091 -1.9455 -0.6273  1.4182  7.1273  
 
Coefficients: 
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            Estimate Std. Error t value Pr(>|t|)     
(Intercept)   -4.473      5.634  -0.794     0.45     
xi            49.636      3.812  13.022 1.15e-06 *** 
--- 
Signif. codes:   
0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
Residual standard error: 3.462 on 8 degrees of freedom 
Multiple R-squared:  0.9549, Adjusted R-squared:  0.9493  
F-statistic: 169.6 on 1 and 8 DF,  p-value: 1.147e-06 

 
Figure 11.2 Estimated regression line 4.473 49.636xy      

 

 

11.3 DISTRIBUTION OF THE ESTIMATORS 

 

To specify the distribution of the estimators ̂  and ̂ , it is necessary to make 

additional assumptions about the random errors aside from just assuming that their 

mean is 0. The usual approach is to assume that the random errors are independent 

normal random variables having mean 0 and variance 2 . That is, we suppose that 

if 
iY  is the response corresponding to the input value 

ix , then 
1 2, , , nY Y Y  are 

independent and 

                                                         2,i iY N x                                    (11.15) 

 

Note that this value 2  is not assumed to be known but is a constant that must be 

estimated from the data. 

The least squares estimator ̂  of β can be expressed as                                     

                              1 1

2 2

1

ˆ

n n

i i i

i i

n

i

i

x Y x Y

x nx

  









 


                

 
1

2 2

1

ˆ

n

i i

i

n

i

i

x x Y

x nx

 












               (11.16) 
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It is a linear combination of the independent normal random variables 
iY , 1,2, ,i n  

and so is itself normally distributed.  

 

Using Eq (11.16), the mean and variance of ̂  are computed as follows: 

                

                                
      

1 1

2 2 2 2

1 1

ˆ

n n

i i i i

i i

n n

i i

i i

x x E Y x x x

E

x nx x nx

 

  

 

  

   
 

 

 

 
 

                          

                                       
   

1 1

2 2

1

ˆ

n n

i i i

i i

n

i

i

x x x x x

E

x nx

 

  



  

  
 



 


 

                  

                                              

2

1 1

2 2

1

ˆ

n n

i i

i i

n

i

i

x x x

E

x nx

   





   
 



 


                            (11.17) 

                                                  since  
1

0
n

i

i

x x


   

 

Thus ˆE    
 

 and so ̂  is an unbiased estimator of β.                          (11.18) 

                        

                                            
 

1

2

2 2

1

ˆ

n

i i

i

n

i

i

Var x x Y

Var

x nx

 



 
 

 
 

 
 





 

                                          
   

2

1

2

2 2

1

ˆ

n

i i

i

n

i

i

x x Var Y

Var

x nx

 






 

 
 





      by independence 

 

                                              
 

22

1

2

2 2

1

ˆ

n

i

i

n

i

i

x x

Var

x nx



 






 

 
 





                               (11.19) 
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               Since    
2 2 2 2 2 2 2 2

1 1 1 1

2 2
n n n n

i i i i i

i i i i

x x x xx x x nx nx x nx
   

              

 

                                                   
2

2 2

1

ˆ
n

i

i

Var

x nx









                                (11.20) 

  

The estimator ̂  is 

                                                   
1

ˆ ˆˆ
n

i

i

Y
Y x x

n
  



                                 (11.21) 

 

and shows that ̂  can also be expressed as a linear combination of the independent 

normal random variables 
iY , 1,2, ,i n  and is thus also normally distributed. Its 

mean is obtained from 

                                         

                                                 
 

1

ˆˆ
n

i

i

E Y
E xE

n
 



  
   

                                     

                                      
 

1

ˆ
n

i

i

x
E x x x

n

 
     




                     (11.22) 

 

Thus  ˆE    and ̂  is also an unbiased estimator.                                 (11.23) 

The variance of ̂  is computed by expressing ̂  as a linear combination of the 
iY .  

                                   2

2
1 1

1ˆ ˆˆ
n n

i
i

i i

Y
Var Var x Var Y x Var

n n
  

 

 
    

 
   

                               
2 2

2 2 2

2
2 2 2 2

1 1

1 1
ˆ

n n

i i

i i

x
Var n x

n n
x nx x nx


  

 

 
 
    
   
 

 
 

                                          

2 2 2

2 1

2 2

1

ˆ

n

i

i

n

i

i

x nx nx

Var

n x nx

  



 
  

 
  

  
  




 

                                                

2 2

1

2 2

1

ˆ

n

i

i

n

i

i

x

Var

n x nx



 




 

 
 




                                (11.24) 
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The quantities ˆˆ
i iY x   , 1,2, ,i n , which represent the differences 

between the actual responses (that is, the 
iY ) and their least squares estimators (that 

is, ˆˆ
ix  ) are called the residuals. The sum of squares of the residuals 

 

                                                  
2

1

ˆˆ
n

R i i

i

SS Y x 


                                     (11.25) 

 

can be utilized to estimate the unknown error variance σ2. Indeed, it can be shown 

that 

                                                           2

22

R
n

SS



                                          (11.26) 

 

That is, 2/RSS   has a chi-square distribution with 2n  degrees of freedom, which 

implies that 

                                                       
2

2RSS
E n



 
  

 
                                      (11.27) 

or  

                                                        2

2

RSS
E

n


 
  

                                       (11.28) 

 

Thus  / 2RSS n  is an unbiased estimator of σ2. In addition, it can be shown that 
RSS  

is independent of the pair ̂  and ̂ . 

 

 

REMARKS  

A plausibility argument as to why 2/RSS   might have a chi-square distribution with 

2n  degrees of freedom and be independent of ̂  and ̂  runs as follows. Because 

the 
iY  are independent normal random variables, it follows that 

 

 
i i

i

Y E Y

Var Y


, 1,2, ,i n  

are independent standard normals and so 

 

                                        
  
 

 
2 2

2

2
1 1

n n
i i i i

n

i ii

Y E Y Y x

Var Y

 


 

  
                     (11.29) 

 

Now if we substitute the estimators ̂  and ̂  for α and β, then 2 degrees of freedom 

are lost, and so 2/RSS   has a chi-square distribution with 2n   degrees of freedom. 



9 
 

The fact that 
RSS  is independent of ̂  and ̂  is quite similar to the fundamental 

result (theorem) that in normal sampling X  and 2S  are independent. Indeed this 

latter result states that if 
1 2, , , nY Y Y  is a normal sample with population mean μ and 

variance 2 , then if in the sum of squares 
 

2

2
1

n
i

i

Y 




 , which has a chi-square 

distribution with n degrees of freedom, one substitutes the estimator Y  for μ to obtain 

the new sum of squares 
 

2

2
1

n
i

i

Y Y




  , then this quantity [equal to   2 21 /n S  ] will be 

independent of Y  and will have a chi-square distribution with 1n  degrees of 

freedom. Since 2/RSS   is obtained by substituting the estimators ̂  and ̂  for α and 

β in the sum of squares 
 

2

2
1

n
i i

i

Y x 



 
 , it is not unreasonable to expect that this 

quantity might be independent of ̂  and ̂ . 

 

 

Notation If we let 

                                          
1 1

n n

xY i i i i

i i

S x x Y Y x Y nxY
 

                            (11.30) 

                                         
2 2 2

1 1

n n

xx i i

i i

S x x x nx
 

                                        (11.31) 

                                         
2 2 2

1 1

n n

YY i i

i i

S Y Y Y nY
 

                                      (11.32) 

 

then the least squares estimators can be expressed as 

 

                              1 1

2 2

1

ˆ

n n

i i i

i i

n

i

i

x Y x Y

x nx

  









 


       ˆ xY

xx

S

S
          ˆˆ Y x               (11.33) 

 

 

PROPOSITION Suppose that the responses 
iY , 1,2, ,i n  are independent normal 

random variables with means 
ix   and common variance σ2. The least squares 

estimators of β and α 

                                                ˆ xY

xx

S

S
          ˆˆ Y x                                   (11.34) 

are distributed as follows: 
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2 2

1ˆ ,  

n

i

i

xx

x

N
nS



  

 
 
 
 
 
 


                                    (11.35) 

                                                     
2

ˆ ,  
xx

N
S


 

 
 
 

                                        (11.36) 

In addition, if 

                                                 
2

1

ˆˆ
n

R i i

i

SS Y x 


                                     (11.37) 

 

is the sum of squares of the residuals, then 

 

                                                         2

22

R
n

SS



                                            (11.38) 

 Also, 
RSS  can be computed from 

                                                 
 

2

xx YY xY

R

xx

S S S
SS

S


                                     (11.39) 

 

 

11.4 STATISTICAL INFERENCES ABOUT THE 

REGRESSION PARAMETERS 

 

Using Proposition, it is a simple matter to devise hypothesis tests and 

confidence intervals for the regression parameters. 

 

Inferences Concerning β 

An important hypothesis to consider regarding the simple linear regression 

model 

                                                       Y x e                                             (11.40) 

 

is the hypothesis that 0  . Its importance derives from the fact that it is equivalent 

to stating that the mean response does not depend on the input variable. To test 

                        

                                        
0 : 0H      versus     

1 : 0H                                (11.41) 

 

note that, from the last Proposition, 
2

ˆ ,  
xx

N
S


 

 
 
 

, so 
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                                            
2

ˆ ˆ
0,1

/
xx

xx

S N
S

   



 
                           (11.42) 

and is independent of 

                                                        2

22

R
n

SS



                                             (11.43) 

 

From the definition of a t-random variable 
2 /

n

n

Z
T

n
  it follows that 

                                           

 

 
  2

2

ˆ

2 ˆ

2

xx
xx

n

RR

S n S
t

SSSS

n

 

  








 



                (11.44) 

 

That is,    ˆ2 /xx Rn S SS     has a t-distribution with 2n  degrees of freedom. 

Therefore, if 
0H  is true (and so 0  ), then 

 

                                                       
 

2

2 ˆxx

n

R

n S
t

SS
 


                                (11.45) 

which gives rise to the following test of 
0H . 

 

                                            Hypothesis Test of 
0 : 0H    

 

A significance level γ test of 
0H  is to 

 

                                            Reject 
0H  if  

 
/2, 2

2 ˆxx

n

R

n S
t

SS
 


                  (11.46) 

                                           Accept 
0H  otherwise 

 

This test can be performed by first computing the value of the test statistic 

  ˆ2 /xx Rn S SS   - call its value v – and then rejecting 
0H  if the desired significance 

level is at least as large as 

                                                2np value P T v                                     (11.47) 

                                                             22 nP T v    

 

where 
2nT 
 is a t-random variable with 2n  degrees of freedom. 
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Example 2  An individual claims that the fuel consumption of his automobile does 

not depend on how fast the car is driven. To test the plausibility of this hypothesis, 

the car was tested at various speeds between 45 and 70 miles per hour. The miles 

per gallon attained at each of these speeds was determined, with the following data 

resulting: 

 

Speed Miles per Gallon 

45      24.2 

50      25.0 

55      23.3 

60      22.0 

65      21.5 

70      20.6 

75      19.8 

Do these data refute the claim that the mileage per gallon of gas is unaffected by the 

speed at which the car is being driven? 

 

Suppose that a simple linear regression model 
                                                         Y x e     

relates Y, the miles per gallon of the car, to x, the speed at which it is being driven. 

The claim being made is that the regression coefficient β is equal to 0. To see if the 

data are strong enough to refute this claim, we need to see if it leads to a rejection of 

the null hypothesis when testing 

                                            
0 : 0H      versus   

1 : 0H    

To compute the value of the test statistic, we first compute the values of 
xxS , 

YYS , 

and 
xYS . A hand calculation yields that 

 
                               700xxS                21.757YYS               119xYS     

 

                                
 

2 2700 21.757 119
1.527

700

xx YY xY

R

xx

S S S
SS

S

  
    

 

                                                   
119ˆ 0.17
700

xY

xx

S

S
        

the value of the test statistic is 

                                   

                                              
 2 5 700ˆ 0.17 8.139

1.527

xx

R

n S

SS


 
    
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Since 
0.005,5 4.032t   it follows that the hypothesis 0   is rejected at the 1 

percent level of significance. Thus, the claim that the mileage does not depend on 

the speed at which the car is driven is rejected; there is strong evidence that increased 

speeds lead to decreased mileages. 

 
  speed<-c(45,50,55,60,65,70,75) 
> miles<-c(24.2,25.0,23.3,22.0,21.5,20.6,19.8) 
> sxx<-sum((speed-mean(speed))^2) 
> sxx 
[1] 700 
> syy<-sum((miles-mean(miles))^2) 
> syy 
[1] 21.75714 
> sxy<-sum((speed-mean(speed))*(miles-mean(miles))) 
> sxy 
[1] -119 
> ssr<-(sxx*syy-sxy^2)/sxx 
> ssr 
[1] 1.527143 
> bet<-sxy/sxx 
> bet 
[1] -0.17 
> v<-abs(bet)*sqrt((7-2)*sxx/ssr) 
> v 
[1] 8.138476 
> qt(0.005,5,lower.tail = FALSE) 
[1] 4.032143 

 

  
 

A confidence interval estimator for β is easily obtained from Equation (11.44): 

 

                                               
 

  2

2 ˆxx

n

R

n S
t

SS
  


                                   (11.48) 

 

Indeed, it follows from this Equation that for any a, 0 1a  , 

 

                                    
 

 /2, 2 /2, 2

2 ˆ 1
xx

a n a n

R

n S
P t t a

SS
  

 
      
 
 

            (11.49) 

or, equivalently, 

                         

                          
 

 
 

/2, 2 /2, 2
ˆ 1

2 2

R R
a n a n

xx xx

SS SS
P t t a

n S n S
  

 
      
   

 

 

                          
   

/2, 2 /2, 2
ˆ ˆ 1

2 2

R R
a n a n

xx xx

SS SS
P t t a

n S n S
   

 
      

   

     (11.50) 
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Confidence Interval for β 

A  100 1 a  percent confidence interval estimator of β is 

 

                                
   

/2, 2 /2, 2
ˆ ˆ  ,  

2 2

R R
a n a n

xx xx

SS SS
t t

n S n S
  

 
  

   

              (11.51) 

 

REMARK 

The result that 

                                                       
2

ˆ
0,1

/ xx

N
S

 




                                 (11.52) 

cannot be immediately applied to make inferences about β since it involves the 

unknown parameter σ2. Instead, we replace 2  by its estimator  / 2RSS n , which 

has the effect of changing the distribution of the statistic from the standard normal 

to the t-distribution with 2n  degrees of freedom. 

 

Example 3  Derive a 95 percent confidence interval estimate of β in the previous 

Example 2. 

 

Since 0.025,5 2.571t  , it follows from the computations of this example that the 

95 percent confidence interval is 

 

                                 
   

/2, 2 /2, 2
ˆ ˆ  ,  

2 2

R R
a n a n

xx xx

SS SS
t t

n S n S
  

 
  

   

 

 

                     
1.527 1.527

0.17 2.571 ,  0.17 2.571 0.224,  0.116
5 700 5 700

 
          

  

 

 

Inferences Concerning α 

The determination of confidence intervals and hypothesis tests for α is 

accomplished in exactly the same manner as was done for β. Specifically, the last 

Proposition can be used to show that 

                                                         
2 2

1

ˆ
0,1

n

i

i

xx

N

x

nS

 








                               (11.53) 
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                                                          2

22

R
n

SS



                                          (11.54) 

 

                                        

 

 
 

2 2

1

2
2

2
1

ˆ

2
ˆ

2

n

i

i

xx xx

nn

R
R i

i

x

nS n n S
t

SS
SS x

n

 



 












 






                (11.55) 

 

From this Eq,  0,1a  , 

                                   
 

 /2, 2 /2, 2
2

1

2
ˆ 1

xx

a n a nn

R i

i

n n S
P t t a

SS x

  



 
 
      
 
 
 


         (11.56) 

                        
   

2 2

1 1
/2, 2 /2, 2

ˆ 1
2 2

n n

R i R i

i i
a n a n

xx xx

SS x SS x

P t t a
n n S n n S

  
 

 
 
      
  
 
 

 
 

 

                        
   

2 2

1 1
/2, 2 /2, 2

ˆ ˆ 1
2 2

n n

R i R i

i i
a n a n

xx xx

SS x SS x

P t t a
n n S n n S

   
 

 
 
      
  
 
 

 
  (11.57) 

The 100(1 − a) percent confidence interval for α is the interval 

 

                                   
   

2 2

1 1
/2, 2 /2, 2

ˆ ˆ,   
2 2

n n

R i R i

i i
a n a n

xx xx

SS x SS x

t t
n n S n n S

  
 

 
 
  
  
 
 

 
         (11.58) 

 

 

Summary of Distributional Results 

 

Model: Y x e     ,  20,e N    

Data:  ,i ix Y , 1,2, ,i n   
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Inferences About Use the Distributional Result  
   

 

   
 

 

 

 
  2

2 ˆxx

n

R

n S
t

SS
  


  

 
  2

2

1

2
ˆxx

nn

R i

i

n n S
t

SS x

  







 

 

 

 

11.5 THE COEFFICIENT OF DETERMINATION AND THE 

SAMPLE CORRELATION COEFFICIENT 

 

Suppose we wanted to measure the amount of variation in the set of response 

values 
1 2, , , nY Y Y  corresponding to the set of input values 

1 2, , , nx x x . A standard 

measure in statistics of the amount of variation in a set of values 
1 2, , , nY Y Y  is given 

by the quantity 

                                                     
2

1

n

YY i

i

S Y Y


                                          (11.59) 

 

For instance, if all the 
iY  are equal — and thus are all equal to Y  — then 

YYS  would 

equal 0. 

The variation in the values of the 
iY  arises from two factors. First, because the 

input values 
ix  are different, the response variables 

iY  all have different mean values, 

which will result in some variation in their values. Second, the variation also arises 

from the fact that even when the differences in the input values are taken into 

account, each of the response variables 
iY  has variance σ2 and thus will not exactly 

equal the predicted value at its input 
ix . 

Let us consider now the question as to how much of the variation in the values 

of the response variables is due to the different input values, and how much is due 

to the inherent variance of the responses even when the input values are taken into 

account. To answer this question, note that the quantity 

  

                                                    
2

1

ˆˆ
n

R i i

i

SS Y x 


                                    (11.60) 

 

measures the remaining amount of variation in the response values after the different 

input values have been taken into account. 
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Thus, 

                                                             
YY RS SS                                          (11.61) 

 

represents the amount of variation in the response variables that is explained by the 

different input values (or by the model), and so the quantity 2R  defined by 

 

                                                    2 1YY R R

YY YY

S SS SS
R

S S


                                (11.62) 

 

represents the proportion of the variation in the response variables that is explained 

by the different input values (or, by the model). 2R  is called the coefficient of 

determination. 

The coefficient of determination 2R  will have a value between 0 and 1. A 

value of 2R  near 1 indicates that most of the variation of the response data is 

explained by the different input values (or by the model), whereas a value of 2R  near 

0 indicates that little of the variation is explained by the different input values. 

The value of 2R  is often used as an indicator of how well the regression model 

fits the data, with a value near 1 indicating a good fit, and one near 0 indicating a 

poor fit. In other words, if the regression model is able to explain most of the 

variation in the response data, then it is considered to fit the data well. 

 

Recall that we defined the sample correlation coefficient r of the set of data 

pairs  ,i ix Y , 1,2, ,i n , by 

                                            
  

   

1

22

1 1

n

i i

i

n n

i i

i i

x x Y Y

r

x x Y Y



 

 



 



 

                                (11.63) 

 

It was noted that r provided a measure of the degree to which high values of x are 

paired with high values of Y and low values of x with low values of Y. A value of r 

near +1 indicated that large x values were strongly associated with large Y values 

and small x values were strongly associated with small Y values, whereas a value 

near −1 indicated that large x values were strongly associated with small Y values 

and small x values with large Y values. 

In the notation of this chapter, 

                                                        xY

xx YY

S
r

S S
                                           (11.64) 

 

Upon using identity 
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 

2

xx YY xY

R

xx

S S S
SS

S


                                   (11.65) 

We see that  

                                     
2

2 21xY xx YY R xx R

xx YY xx YY YY

S S S SS S SS
r R

S S S S S


                      (11.66) 

That is, 

                                                              2r R                                         (11.67) 

 

and so, except for its sign indicating whether it is positive or negative, the sample 

correlation coefficient is equal to the square root of the coefficient of determination. 

The sign of r is the same as that of ̂ . 

The above gives additional meaning to the sample correlation coefficient. For 

instance, if a data set has its sample correlation coefficient r equal to 0.9, then this 

implies that a simple linear regression model for these data explains 81 percent (since 
2 20.9 0.81R   ) of the variation in the response values. That is, 81 percent of the 

variation in the response values is explained by the different input values (or by the 

model). 

 

11.6 ANALYSIS OF RESIDUALS: ASSESSING THE MODEL 

 

The initial step for ascertaining whether or not the simple linear regression 

model 

                                           Y x e    ,    20,e N                                (11.68) 

 

is appropriate in a given situation is to investigate the scatter diagram. Indeed, this 

is often sufficient to convince one that the regression model is or is not correct. 

Moreover, the least squares estimators ̂  and ̂  should be computed and the residual 

 ˆˆ
i iY x   , 1,2, ,i n  analyzed. The analysis begins by normalizing, or 

standardizing, the residuals by dividing them by  / 2RSS n , the estimate of the 

standard deviation of the iY . The resulting quantities 

 

                                                    
 

 

ˆˆ

/ 2

i i

R

Y x

SS n

  


 , 1,2, ,i n                                   (11.69) 

 

are called the standardized residuals. 
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When the simple linear regression model is correct, the standardized residuals 

are approximately independent standard normal random variables, and thus should 

be randomly distributed about 0 with about 95 percent of their values being between 

−2 and +2 (since  1.96 1.96 0.95P Z    ). In addition, a plot of the standardized 

residuals should not indicate any distinct pattern. Indeed, any indication of a distinct 

pattern should make one suspicious about the validity of the assumed simple linear 

regression model. 

Figure 11.3 presents three different scatter diagrams and their associated 

standardized residuals. The first of these, as indicated both by its scatter diagram and 

the random nature of its standardized residuals, appears to fit the straight-line model 

quite well. The second residual plot shows a discernible pattern, in that the residuals 

appear to be first decreasing and then increasing as the input level increases. This 

often means that higher order (than just linear) terms are needed to describe the 

relationship between the input and response. This is also indicated by the scatter 

diagram. The third standardized residual plot also shows a pattern, in that the 

absolute value of the residuals appear to be increasing, as the input level increases. 

This indicates that the variance of the response is not constant but increases with the 

input level. 

 

 
Figure 11.3a. 

 

 
Figure 11.3b 
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Figure 11.  3c 

 

 


