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ONE-SIDED TESTS 

In testing the null hypothesis that 
0  , we have chosen a test that calls for 

rejection when X  is far from 0 . That is, a very small value of X  or a very large 

value appears to make it unlikely that μ (which X  is estimating) could equal 0 . 

However, what happens when the alternative hypothesis to 
0 0:H    is 

1 0:H   ? 

In this latter case we would not want to reject 
0H  when X  is small (since a small X  

is more likely when 
0H  is true than when 

1H  is true). Thus, in testing 

                                          0 0:H    versus  1 0:H                                 (10.29) 

we should reject 0H  when X , the point estimate of 0 , is much greater than 0 . That 

is, the critical region should be of the following form: 

                                         1 2 0, , , :nC X X X X c                                 (10.30) 

Since the probability of rejection should equal α when 0H  is true, we require that c 

be such that 

                                                     
0 0P X c                                         (10.31) 

But since  

                                                
 00

/

n XX
Z

n






                                 (10.32) 

has a standard normal distribution when 0H  is true, Equation (10.31) is equivalent 

to 

                                                       
c n

P Z 


 
   

 
                                    (10.33) 

But since 

                                                         P Z z                                          (10.34) 

                                                       
z

c
n

                                               (10.35) 

Hence, the test of the hypothesis (10.29) is to reject 0H  if 0 /X z n   , and 

accept otherwise; or, equivalently, to 
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                                            accept 
0H  if  0

n
X z


                               (10.36)               

                                            reject 
0H  if   0

n
X z


                               (10.37) 

This is called a one-sided critical region (since it calls for rejection only when X  is 

large). Correspondingly, the hypothesis testing problem 

                                                          
0 0:H                                             (10.38) 

                                                          1 0:H     

is called a one-sided testing problem (in contrast to the two-sided problem that 

results when the alternative hypothesis is 1 0:H   ). 

To compute the p-value in the one-sided test, we first use the data to determine 

the value of the statistic  0 /n X   . The p-value is then equal to the probability 

that a standard normal would be at least as large as this value. 

 

Exercise 5. Suppose in Exercise 1 that we know in advance that the signal value is 

at least as large as 8. The same signal value is independently sent five times and the 

mean value received is 9.5X  . What can be concluded in this case? 

 To see if the data are consistent with the hypothesis that the mean is 8, we 

test 

                                                         0 : 8H     

against the one-sided alternative:    1 : 8H    

The value of the test statistic is 

                                          0 / 5 9.5 8 / 2 1.68n X       

and the p-value is the probability that a standard normal would exceed 1.68, namely, 

                                      value 1.68 1 1.68 0.0465p P Z         
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the test would call for rejection at all significance levels greater than or equal to 

0.0465, it would, for instance, reject the null hypothesis at the 0.05   level of 

significance. 

 

The p-value is the probability, assuming the null hypothesis, of seeing data at 

least as extreme as the experimental data (the value of the test statistic). 

 

The operating characteristic function of the one-sided test, 

                                                   0accepting P H                                    (10.39) 

can be obtained as follows: 

                                       0

/

X
P z

n
 


 



 
  

 
                                             (10.40) 

                                              0

/ /

X
P z

n n


  

 

  
   

 
  

                                             0

/ /

X
P z

n n


 

 

 
   

 
 

                                            0

/
P Z z

n


 



 
   

 
,    0,1Z N                     (10.41) 

where the last equation follows since   /n X    has a standard normal 

distribution. We can write 

                                                   0

/
z

n


 
  



 
  

 
                                  (10.42) 

 

Since  , being a distribution function, is increasing in its argument, it follows that 

    decreases in μ, which is intuitively pleasing since it certainly seems reasonable 

that the larger the true mean μ, the less likely it should be to conclude that 0  . 

  

The test given by Equation (10.36-37), 
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                                              accept H0 if  0

n
X z


                                    

                                              reject H0  if   0

n
X z


                                

which was designed to test 
0 0:H    versus 

1 0:H   , can also be used to test, at 

level of significance α, the one-sided hypothesis 

                                           
0 0:H       versus     

1 0:H                      (10.43) 

REMARK 

We can also test the one-sided hypothesis 

                                0 0:H       (or 0  )  versus 1 0:H                  (10.44) 

at significance level α by 

                                        accepting 
0H   if   0

n
X z


                     (10.45) 

                                        rejecting 0H  if   0

n
X z


                       (10.46) 

This test can alternatively be performed by first computing the value of the 

test statistic  0 /n X   . The p-value would then equal the probability that a 

standard normal would be less than this value, and the hypothesis would be rejected 

at any significance level greater than or equal to this p-value. 

 

Exercise 6. All cigarettes presently on the market have an average nicotine content 

of at least 1.6 mg per cigarette. A firm that produces cigarettes claims that it has 

discovered a new way to cure tobacco leaves that will result in the average nicotine 

content of a cigarette being less than 1.6 mg. To test this claim, a sample of 20 of 

the firm’s cigarettes were analyzed. If it is known that the standard deviation of a 

cigarette’s nicotine content is 0.8 mg, what conclusions can be drawn, at the 5 

percent level of significance, if the average nicotine content of the 20 cigarettes is 

1.54? 

We must first decide on the appropriate null hypothesis. The rejection of the 

null hypothesis is a strong statement about the data not being consistent with this 
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hypothesis. In the preceding example we would like to approve the producer’s 

claims only when there is substantial evidence for it, we should take this claim as 

the alternative hypothesis. That is, we should test 

                                          
0 : 1.6H       versus      

1 : 1.6H     

Now, the value of the test statistic is 

                                      0 / 20 1.54 1.6 / 0.8 0.336n X          

and so the p-value is given by 

                                   value 0.336 0.368p P Z      ,    0,1Z N   

Since this value is greater than 0.05, the foregoing data do not enable us to reject, at 

the 0.05 percent level of significance, the hypothesis that the mean nicotine content 

exceeds 1.6 mg. In other words, the evidence, although supporting the cigarette 

producer’s claim, is not strong enough to prove that claim. ■ 

 

REMARKS 

(a) There is a direct analogy between confidence interval estimation and 

hypothesis testing.  

For instance, for a normal population having mean μ and known variance σ2, we 

have shown that a  100 1   percent confidence interval for μ is given by 

                                              /2 /2,  x z x z
n n

 

 


 
   
 

                            (10.47) 

where x  is the observed sample mean. More formally, the confidence interval 

statement is equivalent to  

                               /2 /2,   1P X z X z
n n

 

 
 
  

      
  

              (10.48) 

Hence, if 0  , then the probability that μ0 will fall in the interval 

                                                 /2 /2,   X z X z
n n

 

  
  

 
                            (10.49) 

is 1  , implying that a significance level α test of 0 0:H    versus 1 0:H    is to 

reject 0H  when 
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                                 0 /2 /2,   X z X z
n n

 

 


 
   
 

                          (10.50)   

 

(b) A Remark on Robustness  

A test that performs well even when the underlying assumptions on which it is based 

are violated is said to be robust. For instance, the tests of were derived under the 

assumption that the underlying population distribution is normal with known 

variance σ2. However, in deriving these tests, this assumption was used only to 

conclude that X  also has a normal distribution. But, by the central limit theorem, it 

follows that for a reasonably large sample size, X  will approximately have a normal 

distribution no matter what the underlying distribution. Thus we can conclude that 

these tests will be relatively robust for any population distribution with variance σ2. 

 

Table 10.1 summarizes the tests of this section. 

     0H           1H        Test Statistic TS      Significance level       p-value if TS t                

 
0        

0          0 /n X            Reject if /2TS z            2P Z t   

 0        0          0 /n X            Reject if TS z                  P Z t   

 0        0          0 /n X            Reject if TS z                 P Z t   

 

 

10.3.2 Case of Unknown Variance: The t-Test 

Up to now we have supposed that the only unknown parameter of the normal 

population distribution is its mean. However, the more common situation is one 

where the mean μ and variance σ2 are both unknown. Let us suppose this to be the 

case and again consider a test of the hypothesis that the mean is equal to some 

specified value μ0. That is, consider a test of 

                                                          0 0:H                                              (10.51) 

                  versus  the alternative     1 0:H    

As before, it seems reasonable to reject 0H  when the sample mean X  is far 

from μ0. However, how far away it need be to justify rejection will depend on the 
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variance σ2. Recall that when the value of σ2 was known, the test called for rejecting 

0H  when 0X   exceeded /2 /z n    or, equivalently, when 

                                                        
 0

/2

n X
z






                                 (10.52) 

Now when σ2 is no longer known, it seems reasonable to estimate it by 

                                                     
 

2

2 1

1

n

i

i

X X

S
n









                                   (10.53) 

and then to reject 
0H  when 

                                               
 0n X

S


                                     (10.54) 

is large. To determine how large a value of this statistic to require for rejection, in 

order that the resulting test have significance level α, we must determine the 

probability distribution of this statistic when 0H  is true. However, as shown, the 

statistic T, defined by 

                                                        
 0n X

T
S


                                   (10.55) 

has, when 0  , a t-distribution with 1n  degrees of freedom. Hence, 

                                       
 

0

0

/2, 1 /2, 1 1n n

n X
P t t

S
  


 

 
     
 
 

              (10.56) 

where /2, 1nt   is the 100 / 2  upper percentile value of the t-distribution with 1n  

degrees of freedom. That is 

                                             1 /2, 1 1 /2, 1 / 2n n n nP T t P T t                        (10.57) 

when 1nT   has a t-distribution with 1n  degrees of freedom. From Equation (10.56) 

we see that the appropriate significance level α test of 

                                    0 0:H            versus          1 0:H                     (10.58) 

is, when σ2 is unknown, to 
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                                            accept  
0H  if  

 0

/2, 1n

n X
t

S






                   (10.59) 

                                            reject  
0H  if  

 0

/2, 1n

n X
t

S






                    (10.60) 

The test defined by Equation (10.59-60) is called a two-sided t-test. It is pictorially 

illustrated in Figure 10.4: 

 

Figure 10.4 

If we let t denote the observed value of the test statistic  0 /T n X S  , then 

the p-value of the test is the probability that T  would exceed t  when 0H  is true. 

That is, the p-value is the probability that the absolute value of a t-random variable 

with 1n  degrees of freedom would exceed t . The test then calls for rejection at all 

significance levels higher than the p-value and acceptance at all lower significance 

levels. 

Program R computes the value of the test statistic and the corresponding p-

value. It can be applied both for one- and two-sided tests.   

As usual in R, the functions pt, dt, qt, rt correspond to cdf, pdf, quantiles, and 

random sampling for a t distribution. Remember that you can type ?dt in RStudio to 

view the help file specifying the parameters of dt. For example, pt(1.65,3) computes 

the probability that x is less than or equal 1.65 given that x is sampled from the t 

distribution with 3 degrees of freedom, i.e.  1.65P x   given that 
3x T . 

 

EXAMPLE 7. Among a clinic’s patients having blood cholesterol levels ranging in 

the medium to high range (at least 220 milliliters per deciliter of serum), volunteers 

were recruited to test a new drug designed to reduce blood cholesterol. A group of 

50 volunteers was given the drug for 1 month and the changes in their blood 

cholesterol levels were noted. If the average change was a reduction of 14.8 with a 

sample standard deviation of 6.4, what conclusions can be drawn? 



 Curs 12  

9 
 

Let us start by testing the hypothesis that the change could be due solely to 

chance—that is, that the 50 changes constitute a normal sample with mean 0. 

Because the value of the t-statistic used to test the hypothesis that a normal mean is 

equal to 0 is 

                                            
0 14.8

50 16.352
6.4

X
T n

S


     

is clear that we should reject the hypothesis that the changes were solely due to 

chance. Unfortunately, however, we are not justified at this point in concluding that 

the changes were due to the specific drug used and not to some other possibility. For 

instance, it is well known that any medication received by a patient (whether or not 

this medication is directly relevant to the patient’s suffering) often leads to an 

improvement in the patient’s condition — the so-called placebo effect. Also, another 

possibility that may need to be taken into account would be the weather conditions 

during the month of testing, for it is certainly conceivable that this affects blood 

cholesterol level. Indeed, it must be concluded that the foregoing was a very poorly 

designed experiment, for in order to test whether a specific treatment has an effect 

on a disease that may be affected by many things, we should try to design the 

experiment so as to neutralize all other possible causes. The accepted approach for 

accomplishing this is to divide the volunteers at random into two groups—one group 

to receive the drug and the other to receive a placebo (that is, a tablet that looks and 

tastes like the actual drug but has no physiological effect). The volunteers should not 

be told whether they are in the actual or control group, and indeed it is best if even 

the clinicians do not have this information (the so-called double-blind test) so as not 

to allow their own biases to play a role. Since the two groups are chosen at random 

from among the volunteers, we can now hope that on average all factors affecting 

the two groups will be the same except that one received the actual drug and the 

other a placebo. Hence, any difference in performance between the groups can be 

attributed to the drug.  

 

EXAMPLE 8. A public health official claims that the mean home water use is 350 

gallons a day. To verify this claim, a study of 20 randomly selected homes was 

instigated with the result that the average daily water uses of these 20 homes were 

as follows:     340    344   362   375 

                       356    386   354   364 
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                       332    402   340   355 

                       362    322   372   324 

                       318    360   338   370 

Do the data contradict the official’s claim? 

 

To determine if the data contradict the official’s claim, we need to test 

                                    
0 : 350H            versus          

1 : 350H    

This can be accomplished by running Program R or, by noting first that the sample 

mean and sample standard deviation of the preceding data set are 

                                                353.8X   ,        21.8478S    

Thus, the value of the test statistic is 

                                
   0 20 353.8 350

0.7778
21.8478

n X
T

S

 
                 

wa<-c(340,344,362,375,356,386,354,364,332,402,340,355,362,322,372,324,318,360
,338,370) 
> mean(wa) 
[1] 353.8 
> sd(wa) 
[1] 21.8478 
> t.test(wa,alternative = c("two.sided"),mu=350,conf.level = 0.95) 
 

 One Sample t-test                                   0.05    
 
data:  wa 
t = 0.77784, df = 19, p-value = 0.4462 
alternative hypothesis: true mean is not equal to 350 
95 percent confidence interval: 
 343.5749 364.0251 
sample estimates: 
mean of x  
    353.8  
t.test(wa,alternative = c("two.sided"),mu=350,conf.level = 0.90) 
 

 One Sample t-test                                 0.1    
 
data:  wa 
t = 0.77784, df = 19, p-value = 0.4462 
alternative hypothesis: true mean is not equal to 350 
90 percent confidence interval: 
 345.3526 362.2474 
sample estimates: 
mean of x  
    353.8  
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Because this is less than 0.05,19 1.73t  , the null hypothesis is accepted at the 10 percent 

level of significance. Indeed, the p-value of the test data is    

                              19 19value 0.7778 2 0.7778 0.4462p P T P T               

indicating that the null hypothesis would be accepted at any reasonable significance 

level, and thus that the data are not inconsistent with the claim of the health official. 

           

We can use a one-sided t-test to test the hypothesis              

                                           0 0:H              (or 0 0:H   )       

against the one-sided alternative  

                                                       1 0:H    

The significance level α test is to 

                                            accept  
0H  if  

 0

, 1n

n X
t

S






  

                                            reject  0H  if  
 0

, 1n

n X
t

S






             

If   0 /n X S v  , then the p-value of the test is the probability that a t-random 

variable with 1n  degrees of freedom would be at least as large as v. 

         The significance level α test of                            

                                          0 0:H              (or 0 0:H   )       

against the one-sided alternative  

                                                         1 0:H    

is 

                                            accept  0H  if  
 0

, 1n

n X
t

S






   

                                            reject  0H  if  
 0

, 1n

n X
t

S






              
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The p-value of this test is the probability that a t-random variable with 1n  degrees 

of freedom would be less than or equal to the observed value of  0 /n X S . 

 

EXAMPLE 9. The manufacturer of a new fiberglass tire claims that its average life 

will be at least 40,000 miles. To verify this claim a sample of 12 tires is tested, with 

their lifetimes (in 1,000s of miles) being as follows: 

Tire   1        2        3        4       5      6       7     8      9       10     11    12 

Life 36.1   40.2   33.8   38.5   42   35.8   37   41   36.8   37.2   33    36 

Test the manufacturer’s claim at the 5 percent level of significance. 

 

To determine whether the foregoing data are consistent with the hypothesis 

that the mean life is at least 40,000 miles, we will test 

                                  
0 : 40000H            versus          1 : 40000H    

A computation gives that 

                                           37.2833X   ,    2.7319S    

and so the value of the test statistic is 

                                          
 12 37.2833 40

3.4448
2.7319

T


     

Since this is less than 0.05,11 1.796t   , the null hypothesis is rejected at the 5 percent 

level of significance. Indeed, the p-value of the test data is 

                           11 11value 3.4448 3.4448 0.0028p P T P T         

indicating that the manufacturer’s claim would be rejected at any significance level 

greater than 0.003.  

Using R:   

tire<-c(36.1,40.2,33.8,38.5,42,35.8,37,41,36.8,37.2,33,36) 
> mean(tire) 
[1] 37.28333 
> sd(tire) 
[1] 2.73191 
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> t.test(tire,alternative = c("less"),mu=40,conf.level = 0.95) 
 
 One Sample t-test 
 
data:  tire 
t = -3.4448, df = 11, p-value = 0.002739 
alternative hypothesis: true mean is less than 40 
95 percent confidence interval: 
     -Inf 38.69963 
sample estimates: 
mean of x  
 37.28333  

 

 

Table 10.2 summarizes the tests of this section. 

1 2, , , nX X X  is a sample from a  2,N    population 2   is unknown,  

1

/
n

i

i

X X n


  ,     
22

1

/ 1
n

i

i

S X X n


     

     
0H           

1H        Test Statistic TS      Significance level       p-value if TS t                

 
0        

0          0 /n X S          Reject if /2, 1nTS t             12 nP T t    

 0        0          0 /n X S          Reject if , 1nTS t                  1nP T t    

 0        0          0 /n X S          Reject if , 1nTS t                  1nP T t    

 

1nT   is a t-random variable with 1n  degrees  of freedom ,  1 , 1n nP T t      

 

 

 


