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Chapter 10 HYPOTHESIS TESTING 

Bibliography: Sheldon Ross 

10.1 INTRODUCTION 

 

We assume that we have a random sample from a population distribution, 

specified except for a vector of unknown parameters. 

This time, we do not want to explicitly estimate the unknown parameters, now 

suppose that we are concerned with using the resulting sample to test some 

particular hypothesis concerning them. As an illustration, suppose that a minimarket 

has just purchased a large supply of bread that have been guaranteed to have an 

average weight of at least 700 g each. To verify this claim, the firm has decided to 

take a random sample of 10 bread loaves to determine their weight. They will then 

use the result of this experiment to ascertain whether or not they accept the baker’s 

hypothesis that the population mean is at least 700 g per bread loaf. 

A statistical hypothesis is usually a statement about a set of parameters of a 

population distribution. It is called a hypothesis because it is not known whether or 

not it is true. A primary problem is to develop a procedure for determining whether 

or not the values of a random sample from this population are consistent with the 

hypothesis. For instance, consider a particular normally distributed population 

having an unknown mean value θ and known variance 1. The statement “θ is less 

than 1” is a statistical hypothesis that we could try to test by observing a random 

sample from this population. If the random sample is deemed to be consistent with 

the hypothesis under consideration, we say that the hypothesis has been “accepted”; 

otherwise we say that it has been “rejected.” 

Note that in accepting a given hypothesis we are not actually claiming that it 

is true but rather we are saying that the resulting data appear to be consistent with it. 

For instance, in the case of a normal  ,1  population, if a resulting sample of size 

10 has an average value of 1.25 , then although such a result cannot be regarded as 

being evidence in favor of the hypothesis “ 1  ,” it is not inconsistent with this 

hypothesis, which would thus be accepted. On the other hand, if the sample of size 

10 has an average value of 3, then even though a sample value that large is possible 

when 1  , it is so unlikely that it seems inconsistent with this hypothesis, which 

would thus be rejected. 
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10.2 SIGNIFICANCE LEVELS 

Consider a population having distribution F , where θ is unknown, and 

suppose we want to test a specific hypothesis about θ. We shall denote this 

hypothesis by 
0H  and call it the null hypothesis. For example, if F  is a normal 

distribution function with mean θ and variance equal to 1, then two possible null 

hypotheses about θ are 

                                                           
0) : 1a H                                              (10.1) 

                                                           
0) : 1b H                                              (10.2) 

The first of these hypotheses states that the population is normal with mean 1 and 

variance 1, whereas the second states that it is normal with variance 1 and a mean 

less than or equal to 1. Note that the null hypothesis in (a), when true, completely 

specifies the population distribution, whereas the null hypothesis in (b) does not.  

 

Suppose now that in order to test a specific null hypothesis 
0H , a population 

sample of size n — say 
1 2, , , nX X X  — is to be observed. Based on these n values, 

we must decide whether or not to accept 
0H . A test for 

0H  can be specified by 

defining a region C in n-dimensional space with the proviso that the hypothesis is to 

be rejected if the random sample
1 2, , , nX X X  turns out to lie in C and accepted 

otherwise. The region C is called the critical region. In other words, the statistical 

test determined by the critical region C is the one that 

                                              accepts 
0H  if  1 2, , , nX X X C                       (10.3) 

                                           and rejects 
0H  if  1 2, , , nX X X C                    (10.4) 

 

Example:  A common test of the hypothesis that θ, the mean of a normal population 

with variance 1, is equal to 1 has a critical region given by 

                                           1 2, , , : 1 1.96 /nC X X X X n                       (10.5) 

This test calls for rejection of the null hypothesis that θ = 1 when the sample average 

differs from 1 by more than 1.96 divided by the square root of the sample size. 
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When developing a procedure for testing a given null hypothesis 
0H , two 

different types of errors can result.  

 a type I error, results if the test incorrectly calls for rejecting 
0H  when 

it is indeed correct. 

  a type II error, results if the test calls for accepting 
0H  when it is false.  

The objective of a statistical test of 
0H  is not to explicitly determine whether 

or not 
0H  is true but rather to determine if its validity is consistent with the resultant 

data. Hence, with this objective it seems reasonable that H0 should only be rejected 

if the resultant data are very unlikely when 
0H  is true. The classical way of 

accomplishing this is to specify a value α and then require the test to have the 

property that whenever 
0H  is true its probability of being rejected is never greater 

than α. The value α, called the level of significance of the test, is usually set in 

advance, with commonly chosen values being 0.1,  0.05,  0.005  . In other words, the 

classical approach to testing 
0H  is to fix a significance level α and then require that 

the test have the property that the probability of a type I error occurring can never 

be greater than α. 

Suppose now that we are interested in testing a certain hypothesis concerning 

θ, an unknown parameter of the population. Specifically, for a given set of parameter 

values w, suppose we are interested in testing 

                                                  
0 :H w                                             (10.6) 

A common approach to developing a test of 
0H , say at level of significance α, is to 

start by determining a point estimator of θ — say  d X . The hypothesis is then 

rejected if  d X  is “far away” from the region w. However, to determine how “far 

away” it need be to justify rejection of 
0H , we need to determine the probability 

distribution of the estimator  d X  when 
0H  is true since this will usually enable us 

to determine the appropriate critical region so as to make the test have the required 

significance level α.  

Example: the test of the hypothesis that the mean of a normal  ,1  population is 

equal to 1, given by Equation (10.5), calls for rejection when the point estimate of θ 

—that is, the sample average—is farther than 1.96 / n  away from 1. The value 

1.96 / n  was chosen to meet a level of significance of 0.05  . 
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10.3 TESTS CONCERNING THE MEAN OF A NORMAL POPULATION 

10.3.1 Case of Known Variance 

Suppose that 
1 2, , , nX X X  is a sample of size n from a normal distribution 

having an unknown mean μ and a known variance 2  and suppose we are interested 

in testing the null hypothesis 

                                                            
0 0:H                                             (10.7) 

against the alternative hypothesis 

                                                            
1 0:H                                              (10.8) 

where 
0  is some specified constant. 

 Since /iX X n  is a natural point estimator of μ, it seems reasonable to 

accept 
0H  if X  is not too far from 

0 . That is, the critical region of the test would 

be of the form 

                                               1 2 0, , , :nC X X X X c                           (10.9) 

for some suitably chosen value c. 

If we desire that the test has significance level α, then we must determine the 

critical value c in Equation (10.9) that will make the type I error probability equal 

to α. That is, c must be such that 

                                                        
0 0P X c                                      (10.10) 

where we write 
0

P  to mean that the preceding probability is to be computed under 

the assumption that 
0  . When 

0  , X  will be normally distributed with mean 

0  and variance 2 / n  and so Z, defined by 

                                                
 00

/

n XX
Z

n






                                  (10.11) 

will have a standard normal distribution. Now Equation (10.10) is equivalent to 

                                                       
c n

P Z 


 
   

 
                                    (10.12) 
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                                      2
c n

P Z 


 
   

 
    

2

c n
P Z





 
   

 
                       (10.13) 

where Z is a standard normal random variable. However, we know that 

                                                          /2
2

P Z z


                                       (10.14) 

And so 

                                                             
/2

c n
z


   

                                                            /2z
c

n

 
                                             (10.15) 

Thus, the significance level α test is to reject 
0H  if 0 /2 /X z n    and accept 

otherwise; or, equivalently, to 

                                            reject 
0H  if 

0 /2

n
X z


                               (10.16) 

                                            accept 
0H  if 0 /2

n
X z


                             (10.17) 

This test can be pictorially represented as shown in Figure 10.1, where we have 

superimposed the standard normal density function [which is the density probability 

function of the test statistic  0 /n X    when 
0H  is true]. 

 

Figure 10.1 The significance level α test. 

 

If our data produced the test statistic 
1x  then we would not reject the null hypothesis 

0H . On the other hand, if our data produced 
2x  then we would reject the null 

hypothesis in favor of the alternative hypothesis. 
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Exercise 1. It is known that if a signal of value μ is sent from location A, then the 

value received at location B is normally distributed with mean μ and standard 

deviation 2. That is, the random noise added to the signal is a  0,4N  random 

variable. There is reason for the people at location B to suspect that the signal value 

8   will be sent today. Test this hypothesis if the same signal value is 

independently sent five times and the mean value received at location B is 9.5X  . 

 

Suppose we are testing at the 5 percent level of significance 0.05  . To begin, 

we compute the test statistic 

                                                0

5
9.5 8 1.68

2

n
X 


     

Since this value is less than 
0.025 1.96z  , the hypothesis is accepted. The data are not 

inconsistent with the null hypothesis in the sense that a sample average as far from 

the value 8 as observed would be expected, when the true mean is 8.  

If a less stringent significance level were chosen — say 0.1   — then the 

null hypothesis would have been rejected. This follows since 
0.05 1.645z  , which is 

less than 1.68. Hence, if we would have chosen a test that had a 10 percent chance 

of rejecting 
0H  when 

0H  was true, then the null hypothesis would have been rejected. 

The “correct” level of significance to use in a given situation depends on the 

individual circumstances involved in that situation. For instance, if rejecting a null 

hypothesis 
0H  would result in large costs that would thus be lost if 

0H  were indeed 

true, then we might elect to be quite conservative and so choose a significance level 

of 0.05 or 0.01.  

The test given by Equation (10.16) 

                                       reject 
0H  if 0 /2

n
X z


                        (10.18)                        

can be described as follows: For any observed value of the test statistic 

 0 /n X   , call it v, the test calls for rejection of the null hypothesis if the 

probability that the test statistic would be as larger than v (exceed in absolut value) 

when 
0H  is true is less than or equal to the significance level α.  

From this, it follows that: 
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 We can determine whether or not to accept the null hypothesis by computing, 

first, the value of the test statistic and, second, the probability that a standard normal 

would (in absolute value) exceed that quantity. This probability—called the p-value 

of the test—gives the critical significance level in the sense that 
0H  will be accepted 

if the significance level α is less than the p-value and rejected if   is greater than or 

equal. 

In practice, the significance level is often not set in advance but rather the data 

are looked at to determine the resultant p-value. Sometimes, this critical significance 

level is clearly much larger than any we would want to use, and so the null hypothesis 

can be readily accepted. At other times the p-value is so small that it is clear that the 

hypothesis should be rejected. 

 

Exercise 2. In Exercise 1, suppose that the mean of the 5 values received is 8.5X 

. In this case, 

                                            0

5 5
8.5 8 0.559

2 4

n
X 


      

Since 

                              0.559 2 0.559 2 0.288 0.576p value P Z P Z          

it follows that the p-value is 0.576 and thus the null hypothesis 
0H  that the signal 

sent has value 8 would be accepted at any significance level α < 0.576.  

On the other hand, if the average of the data values were 11.5, then the p-value 

of the test that the mean is equal to 8 would be 

                                          0

5 5
11.5 8 3.5 3.913

2 2

n
X 


              

                          3.913 2 3.913 2 0.0000455 0.0000911p value P Z P Z           

 For such a small p-value, the hypothesis that the value 8 was sent is rejected.  

 

We have not yet talked about the probability of a type II error—that is, the 

probability of accepting the null hypothesis when the true mean μ is unequal to μ0. 

This probability will depend on the value of μ, and so let us define     by 
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                                       0acceptance of HP                              (10.19) 

                                            0
/2

/

X
P z

n
 





 
  

 
  

                                            0
/2 /2

/

X
P z z

n
  





 
    

 
 

The function     is called the operating characteristic (or OC) curve and 

represents the probability that 
0H  will be accepted when the true mean is μ. 

To compute this probability, we use the fact that X  is normal with mean μ 

and variance 2 / n  and so 

                                                      0,1
/

X
Z N

n






                                    (10.20) 

Hence,   

                                             0
/2 /2

/

X
P z z

n
  


 



 
    

 
 

                                  0
/2 /2

/ / /

X
P z z

n n n
  

  

  

  
      

 
 

                                  0
/2 /2

/ / /
P z Z z

n n n
  

 

  

 
       

 
 

                                        0 0
/2 /2

/ /
P z Z z

n n
  

   

 

  
      

 
 

                                           0 0
/2 /2

/ /
z z

n n
 

   
 

 

    
       

   
                   (10.21) 

where ϕ is the standard normal distribution function. 

For a fixed significance level α, the OC curve given by Equation (10.21) is 

symmetric about μ0 and will depend on μ only through 0 /n    . This curve with 

the abscissa changed from μ to 0 /d n      is presented in Figure 8.2 (Sheldon) 

when 0.05  . 
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Figure 10.2 Operating characteristic curve. 

 

Exercise 3. For the problem presented in Exercise 1, let us determine the probability 

of accepting the null hypothesis that 8   when the actual value sent is 10. To do 

so, we compute 

                                                   0

5
2 5

2

n
 


        

As 
0.025 1.96z  , the desired probability is, from Equation (10.21), 

                                           5 1.96 5 1.96 0.392           

pnorm(-sqrt(5)+1.96,0,1)-pnorm(-sqrt(5)-1.96,0,1) 
[1] 0.3912343 

 

REMARK 

The function  1    is called the power-function of the test. Thus, for a given 

value μ, the power of the test is equal to the probability of rejection 
0H  when μ is 

the true value.  

Significance level and power are used to quantify the quality of the test. Ideally 

a significance test would not make errors. That is, it would not reject 
0H  when 

0H  

was true and would reject 
0H  in favor of 

1H  when 
1H  was true. 

 

The two probabilities we focus on are: 

 Significance level =  0 0reject HP H   

                  = probability we incorrectly reject  0 type I errorH P    
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 Power = probability we correctly reject 
0H  

            =  0 1reject HP H =  1 type II errorP  1     

Ideally, a hypothesis test should have a small significance level (near 0) and a large 

power (near 1).  

Here are two analogies to help you remember the meanings of significance 

level and power: 

1. Think of 
0H  as the hypothesis ‘nothing noteworthy is going on’, i.e. ‘the coin 

is fair’, ‘the treatment is no better than placebo’ etc. And think of 
1H  as the 

opposite: ‘something interesting is happening’. Then power is the probability 

of detecting something interesting when it’s  present and significance level is 

the probability of mistakenly claiming some thing interesting has occured.  

2. In the U.S. criminal defendents (inculpati penali) are presumed innocent until 

proven guilty beyond a reasonable doubt. We can phrase this in Null 

Hypothesis terms as  

                      
0H : the defendant is innocent (the default)  

                      
1H : the defendant is guilty.  

Significance level is the probability of finding an innocent person guilty. Power is 

the probability of correctly finding a guilty party guilty. ‘Beyond a reasonable doubt’ 

means we should demand the significance level be very small. 

The next two figures show high and low power tests. 

 

Figure 10.3 High and low power tests. 
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The shaded area under  0f x H  represents the significance level. Remember 

the significance level is: 

•The probability of falsely rejecting the null hypothesis when it is true.  

•The probabilitiy the test statistic falls in the rejection region even though 
0H  is true.  

Likewise, the shaded area under  1f x H  represents the power, i.e. the 

probability that the test statistic is in the rejection (of 
0H ) region when 

1H  is true. 

Both tests have the same significance level, but if  1f x H  has considerable overlap 

with  0f x H  the power is much lower.  

In both tests both distributions are standard normal. The null distribution, 

rejection region and significance level are all the same. (The significance level is the 

red/purple area under  0f x H  and above the rejection region.)  

In the top figure we see the means of the two distributions are 4 standard 

deviations apart. Since the areas under the densities have very little overlap the test 

has high power. That is if the data x is drawn from 
1H  it will almost certainly be in 

the rejection region. For example 
3x  would be a very surprising outcome for the 

1H

distribution.  

In the bottom figure we see the means of the two distributions are just 0.4 

standard deviations apart. Since the areas under the densities have a lot of overlap 

the test has low power. That is if the data x is drawn from 
1H  it is highly likely to be 

in the non-rejection region. For example 
3x  would be not be a very surprising 

outcome for the 
1H  distribution.  

Typically we can increase the power of a test by increasing the amount of data 

and thereby decreasing the variance of the null and alternative distributions. In 

experimental design it is important to determine ahead of time the number of trials 

or subjects needed to achieve a desired power. 

The operating characteristic function is useful in determining how large the 

random sample need be to meet certain specifications concerning type II errors. For 

instance, suppose that we desire to determine the sample size n necessary to ensure 

that the probability of accepting 
0 0:H    when the true mean is actually 

1  is 

approximately β. 



 Curs 11  

12 
 

That is, we want n to be such that 

                                                          1     

                                         0 1 0 1
/2 /2

/ /
z z

n n
 

   
  

 

    
       

   
                 (10.22) 

A solution can be obtained by using the standard normal distribution table. In 

addition, an approximation for n can be derived from Equation (10.22). To start, 

suppose that 
1 0  . Then, because this implies that 

                                                     
 0 1

/2 /2

n
z z 

 




                               (10.23) 

it follows, since ϕ is an increasing function, that 

                          0 1
/2 /2 /2 /2 / 2

/
z z P Z z P Z z

n
   

 
  



 
         

 
      (10.24) 

Hence, we can take 

                                                       0 1
/2 0

/
z

n


 




 
  

 
                                (10.25) 

                                                       0 1
/2

/
z

n


 
 



 
  

 
                               (10.26) 

Or, since 

                                                P Z z P Z z z                             (10.27) 

we obtain from Equation (10.26) that 

                                                    0 1 /2

n
z z  


      

                                                      
 
 

2
2

/2

2

0 1

z z
n

  

 





                                    (10.28) 

In fact, the same approximation would result when 
1 0   and so Equation (10.28) 

is in all cases a reasonable approximation to the sample size necessary to ensure that 

the type II error at the value 
1   is approximately equal to β. 
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Exercise 4. For the problem of Exercise 1, how many signals need be sent so that 

the 0.05 level test of 
0 0: 8H    has at least a 75 percent probability of rejection when 

9.2  ? 

 Since 1 0.75  , 0.25  , 
0.025 1.96z  , 

0.25 0.67z  , the approximation (10.28) 

yields 

                                  
 
 

 

 

2 22

/2

2 2

0 1

1.96 0.67 4
19.21

1.2

z z
n

  

 

  
  


 

Hence a sample of size 20 is needed. From Equation (10.21), we see that with 20n                             

       0 0
/2 /2

1.2 20 1.2 20
9.2 1.96 1.96

2 2/ /
z z

n n
 

   
    

 

       
                   

       
 

                               0.723 4.643 1 0.723 0.235           

Therefore, if the message is sent 20 times, then there is a 76.5 percent chance that 

the null hypothesis 8   will be rejected when the true mean is 9.2. 

   


