4D-Dirac Killing operators in Cartesian charts with standard Dirac-matrices restart;with(linalg):n:=4;eta_5:=<<1|0|0|0|0>,<0|-1|0|0|0>,<0|0|-1|0|0>,<0|0|0|-1|0>,<0|0|0|0|-1>>;eta:=<<1|0|0|0>,<0|-1|0|0>,<0|0|-1|0>,<0|0|0|-1>>;Id:=<<1|0|0|0>,<0|1|0|0>,<0|0|1|0>,<0|0|0|1>>:Coordinates and local framesZu:=array(1..5,[Z0,Z1,Z2,Z3,Z5]);dZu:=array(1..5);Xu:=array(1..4,[t,x1,x2,x3]);dXu:=array(1..4,[dt,dx1,dx2,dx3]);Dd:=array(1..4,[D0,D1,D2,D3]);xD:=x1*D1+x2*D2+x3*D3;r:=sqrt(x1^2+x2^2+x3^2);Z0:=-1/2/t/omega^2*(1-omega^2*(t^2-r^2));Z5:=-1/2/t/omega^2*(1+omega^2*(t^2-r^2));Z1:=-x1/omega/t;Z2:=-x2/omega/t;Z3:=-x3/omega/t;Zd:=array(1..5,[Z0,-Z1,-Z2,-Z3,-Z5]):Zd:=array(1..5,[Z0,-Z1,-Z2,-Z3,-Z5]):for i from 1 to 5 dodZu[i]:=add(diff(Zu[i],Xu[k])*dXu[k],k=1..4);end do;dZd:=array(1..5,[dZu[1],-dZu[2],-dZu[3],-dZu[4],-dZu[5]]):Dp:=proc(cucu,k) local t; global Xu; map(diff,cucu,Xu[k+1]); end proc: Dpp:=proc(cucu,k,j) local t; global Xu; map(diff,cucu,Xu[k+1],Xu[j+1]); end proc: Metric tensorline:=simplify(dZu[1]^2-add(dZu[j]^2,j=2..5)):Gdd:=array(symmetric,1..4,1..4):for i from 1 to 4 do for j from 1 to 4 do der:=(1/2)*diff(line,dXu[i],dXu[j]);Gdd[i,j]:=simplify(der);end do;end do:print(Gdd);g:=simplify(sqrt(-det(Gdd)));Guu:=array(symmetric,1..4,1..4):Guu:=simplify(evalm(Gdd^(-1))); 1-forms:form:=array(1..4): xdx:=x1*dx1+x2*dx2+x3*dx3:form[1]:=-dt/omega/t;form[2]:=-dx1/omega/t;form[3]:=-dx2/omega/t;form[4]:=-dx3/omega/t;verific_line:=simplify(add(eta[k,k]*form[k]^2,k=1..4)-line);TetradesH:=array(1..4,1..4):H1:=array(1..4,1..4):E:=array(1..4,1..4):for i from 1 to 4 do for j from 1 to 4 do; H1[i,j]:=simplify(diff(form[i],dXu[j])); end do; end do;print(H1);QyQ+SSZUcmFuc0c2IkkjSWRHRiUhIiI=H:=evalm(Trans.H1);E:=simplify(inverse(H));simplify(multiply(E,H)):Connection in local framesCartan coefficients with lower indicesCart:=array(1..4,1..4,1..4):aux1:=array(1..4,1..4,1..4):aux2:=array(1..4,1..4,1..4):for i from 1 to 4 do for j from 1 to 4 dofor k from 1 to 4 docucu:=simplify((diff(H[k,i],Xu[j])-diff(H[k,j],Xu[i]))*eta[k,k]);aux1[i,j,k]:=cucu;end do;end do; end do;Nexti:=0:j:=0:k:=0:for i from 1 to 4 do for j from 1 to 4 dofor k from 1 to 4 docucu1:=simplify(sum('aux1[s,k,i]*E[s,j]','s'=1..4));aux2[j,k,i]:=cucu1end do; end do; end do;aux3[2,1,2]:Nextfor i from 1 to 4 do for j from 1 to 4 dofor k from 1 to 4 docucu2:=simplify(sum('aux2[j,p,i]*E[p,k]','p'=1..4)):Cart[j,k,i]:=simplify(cucu2)end do;end do; end do:Cart[2,1,2]:ConnectionConex:=array(1..4,1..4,1..4):for i from 1 to 4 do for j from 1 to 4 dofor k from 1 to 4 docucu:=simplify(Cart[i,j,k]-Cart[i,k,j]+Cart[k,j,i]):Conex[i,j,k]:=cucu/2end do;end do; end do:Dirac matrices Dir:=proc(s,t,x,y,z) local matr; matr:=<<s|0|t-z|-x+I*y>,<0|s|-x-I*y|t+z>,<t+z|x-I*y|-s|0>,<x+I*y|t-z|0|-s>>; matr; end proc:Id:=<<1|0|0|0>,<0|1|0|0>,<0|0|1|0>,<0|0|0|1>>:gam1:=Dir(1,0,0,0,0);gam2:=Dir(0,0,-1,0,0):gam3:=Dir(0,0,0,-1,0):gam4:=Dir(0,0,0,0,-1):g0:=evalm(gam1):g1:=evalm(gam2):g2:=evalm(gam3):g3:=evalm(gam4):g5:=evalm(I*g0.g1.g2.g3);Gam1:=evalm(E[1,1]*g0+E[1,2]*g1+E[1,3]*g2+E[1,4]*g3):Gam2:=evalm(E[2,1]*g0+E[2,2]*g1+E[2,3]*g2+E[2,4]*g3):Gam3:=evalm(E[3,1]*g0+E[3,2]*g1+E[3,3]*g2+E[3,4]*g3):Gam4:=evalm(E[4,1]*g0+E[4,2]*g1+E[4,3]*g2+E[4,4]*g3):G0:=Gam1:G1:=Gam2:G2:=Gam3:G3:=Gam4:SL(2,C) generators with upper indicesS12:=evalm((I/2)*(gam1.gam2));Sp01:=S12;S13:=evalm((I/2)*(gam1.gam3)):Sp02:=S13:S14:=evalm((I/2)*(gam1.gam4)):Sp03:=S14:S23:=evalm((I/2)*(gam2.gam3)):Sp12:=S23:S24:=evalm((I/2)*(gam2.gam4)):Sp13:=S24:S34:=evalm((I/2)*(gam3.gam4)):Sp23:=S34:Sigma1:=evalm(2*S34):Sigma2:=evalm(-2*S24):Sigma3:=evalm(2*S23):Spin Connection and Dirac operatorSCon1:=I*simplify(evalm(Conex[1,1,2]*S12+Conex[1,1,3]*S13+Conex[1,1,4]*S14+Conex[1,2,3]*S23+Conex[1,2,4]*S24+Conex[1,3,4]*S34));SCon2:=I*simplify(evalm(Conex[2,1,2]*S12+Conex[2,1,3]*S13+Conex[2,1,4]*S14+Conex[2,2,3]*S23+Conex[2,2,4]*S24+Conex[2,3,4]*S34));SCon3:=I*simplify(evalm(Conex[3,1,2]*S12+Conex[3,1,3]*S13+Conex[3,1,4]*S14+Conex[3,2,3]*S23+Conex[3,2,4]*S24+Conex[3,3,4]*S34)):SCon4:=I*simplify(evalm(Conex[4,1,2]*S12+Conex[4,1,3]*S13+Conex[4,1,4]*S14+Conex[4,2,3]*S23+Conex[4,2,4]*S24+Conex[4,3,4]*S34)):Momentum operators-chiral versionPG0:=evalm(I*(E[1,1]*D0+E[2,1]*D1+E[3,1]*D2+E[4,1]*D3)*Id+I*SCon1):PG1:=evalm(I*(E[1,2]*D0+E[2,2]*D1+E[3,2]*D2+E[4,2]*D3)*Id+I*SCon2);PG2:=evalm(I*(E[1,3]*D0+E[2,3]*D1+E[3,3]*D2+E[4,3]*D3)*Id+I*SCon3):PG3:=evalm(I*(E[1,4]*D0+E[2,4]*D1+E[3,4]*D2+E[4,4]*D3)*Id+I*SCon4):Dirac operatorOpD:=simplify(evalm(g0.PG0+g1.PG1+g2.PG2+g3.PG3));ED:=evalm(OpD-m*Id):Operator algebraProducts of scalar operatorsProd:=proc(X,Y) local AA,AX,ProdAB,A0,A1,A2,A3,A11,A00,A01,A02,A03,A22,A33,A12,A23,A13; global Xu,Dd; A00:=diff(X,Dd[1],Dd[1])/2;A01:=diff(X,Dd[1],Dd[2]);A02:=diff(X,Dd[1],Dd[3]);A03:=diff(X,Dd[1],Dd[4]);A11:=diff(X,Dd[2],Dd[2])/2;A22:=diff(X,Dd[3],Dd[3])/2;A33:=diff(X,Dd[4],Dd[4])/2;A12:=diff(X,Dd[3],Dd[2]);A23:=diff(X,Dd[4],Dd[3]);A13:=diff(X,Dd[2],Dd[4]);AA:=A00*Dd[1]^2+A01*Dd[1]*Dd[2]+A02*Dd[1]*Dd[3]+A03*Dd[1]*Dd[4]+A11*Dd[2]^2+A22*Dd[3]^2+A33*Dd[4]^2+A12*Dd[3]*Dd[2]+A13*Dd[2]*Dd[4]+A23*Dd[3]*Dd[4];AX:=simplify(X-AA);A0:=diff(AX,Dd[1]);A1:=diff(AX,Dd[2]);A2:=diff(AX,Dd[3]);A3:=diff(AX,Dd[4]); ProdAB:=X*Y+A0*diff(Y,Xu[1])+A1*diff(Y,Xu[2])+A2*diff(Y,Xu[3])+A3*diff(Y,Xu[4])+A00*(2*Dd[1]*diff(Y,Xu[1])+diff(Y,Xu[1],Xu[1]))+A11*(2*Dd[2]*diff(Y,Xu[2])+diff(Y,Xu[2],Xu[2]))+A22*(2*Dd[3]*diff(Y,Xu[3])+diff(Y,Xu[3],Xu[3]))+A33*(2*Dd[4]*diff(Y,Xu[4])+diff(Y,Xu[4],Xu[4]))+A12*(Dd[2]*diff(Y,Xu[3])+Dd[3]*diff(Y,Xu[2])+diff(Y,Xu[2],Xu[3]))+A23*(Dd[3]*diff(Y,Xu[4])+Dd[4]*diff(Y,Xu[3])+diff(Y,Xu[3],Xu[4]))+A13*(Dd[4]*diff(Y,Xu[2])+Dd[2]*diff(Y,Xu[4])+diff(Y,Xu[2],Xu[4]))+A01*(Dd[2]*diff(Y,Xu[1])+Dd[1]*diff(Y,Xu[2])+diff(Y,Xu[1],Xu[2]))+A02*(Dd[3]*diff(Y,Xu[1])+Dd[1]*diff(Y,Xu[3])+diff(Y,Xu[3],Xu[1]))+A03*(Dd[4]*diff(Y,Xu[1])+Dd[1]*diff(Y,Xu[4])+diff(Y,Xu[4],Xu[1]));simplify(ProdAB);end proc:CommutationCom:=proc(X,Y) local cucu;cucu:=simplify(Prod(X,Y)-Prod(Y,X));cucu;end proc:Standard FormStandardForm :=proc(X) local AA,AX,A0,A1,A2,A3,A11,A00,A01,A02,A03,A22,A33,A12,A23,A13,stf; global Xu,Dd; A00:=simplify(diff(X,Dd[1],Dd[1])/2);A01:=simplify(diff(X,Dd[1],Dd[2]));A02:=simplify(diff(X,Dd[1],Dd[3]));A03:=simplify(diff(X,Dd[1],Dd[4]));A11:=simplify(diff(X,Dd[2],Dd[2])/2);A22:=simplify(diff(X,Dd[3],Dd[3])/2);A33:=simplify(diff(X,Dd[4],Dd[4])/2);A12:=simplify(diff(X,Dd[3],Dd[2]));A23:=simplify(diff(X,Dd[4],Dd[3]));A13:=simplify(diff(X,Dd[2],Dd[4]));AA:=A00*Dd[1]^2+A01*Dd[1]*Dd[2]+A02*Dd[1]*Dd[3]+A03*Dd[1]*Dd[4]+A11*Dd[2]^2+A22*Dd[3]^2+A33*Dd[4]^2+A12*Dd[3]*Dd[2]+A13*Dd[2]*Dd[4]+A23*Dd[3]*Dd[4];AX:=simplify(X-AA);A0:=simplify(diff(AX,Dd[1]));A1:=simplify(diff(AX,Dd[2]));A2:=simplify(diff(AX,Dd[3]));A3:=simplify(diff(AX,Dd[4])); stf:=AA+A0*Dd[1]+A1*Dd[2]+A2*Dd[3]+A3*Dd[4]+subs(Dd[1]=0,Dd[2]=0,Dd[3]=0,Dd[4]=0,X);stf;end proc:Products of Dirac operatorsProdD:=proc(X::matrix(4,4),Y::matrix(4,4))::matrix(4,4); local i, j, mat::array(1..4,1..4); global Prod, StandardForm; mat:=array(1..4,1..4);for i from 1 to 4 do;for j from 1 to 4 do; mat[i,j]:=simplify(add(Prod(X[i,k],Y[k,j]),k=1..4)); end do; end do; return map(StandardForm,evalm(mat)); end proc:Commutation of Dirac operatorsComD:=proc(X::matrix(4,4),Y::matrix(4,4))::matrix(4,4);global ProdD; simplify(evalm(ProdD(X,Y)-ProdD(Y,X)));end proc:Anticommutation of Dirac operatorsAComD:=proc(X::matrix(4,4),Y::matrix(4,4))::matrix(4,4); global ProdD;simplify(evalm(ProdD(X,Y)+ProdD(Y,X)));end proc:TraceTr:=proc(Y::matrix(4,4));simplify(Y[1,1]+Y[2,2]+Y[3,3]+Y[4,4]);end proc:The Dirac Equations:=Xu[1],Xu[2],Xu[3],Xu[4];psi:=matrix(4,1,[X1(s),X2(s),Y1(s),Y2(s)]);ED1:=expand(subs(D0=0,D1=0,D2=0,D3=0,simplify(add(Prod(OpD[1,k],psi[k,1]),k=1..4))))-m*psi[1,1]:ED2:=expand(subs(D0=0,D1=0,D2=0,D3=0,simplify(add(Prod(OpD[2,k],psi[k,1]),k=1..4))))-m*psi[2,1]:ED3:=expand(subs(D0=0,D1=0,D2=0,D3=0,simplify(add(Prod(OpD[3,k],psi[k,1]),k=1..4))))-m*psi[3,1]:ED4:=expand(subs(D0=0,D1=0,D2=0,D3=0,simplify(add(Prod(OpD[4,k],psi[k,1]),k=1..4))))-m*psi[4,1]:Conserved operatorsThe Killing vectorsKd:=array(1..5,1..5,1..4);Ku:=array(1..5,1..5,1..4);RezKu:=array(1..4);Cons:=array(antisymmetric,1..5,1..5);for j from 1 to 5 dofor k from 1 to j doCons[j,k]:=simplify(Zd[k]*dZd[j]-Zd[j]*dZd[k]);end do;end do:for i from 1 to 5 dofor j from 1 to 5 dofor k from 1 to 4 doKd[i,j,k]:=diff(Cons[i,j],dXu[k]);end do;end do;end do;for i from 1 to 5 dofor j from 1 to 5 dofor k from 1 to 4 docucu:=add(Kd[i,j,n]*Guu[n,k],n=1..4);Ku[i,j,k]:=simplify(cucu);end do;end do;end do;Killing:=proc(a,b)::array(1..4); global Ku,RezKu; RezKu[1]:=Ku[a,b,1];RezKu[2]:=Ku[a,b,2];RezKu[3]:=Ku[a,b,3];RezKu[4]:=Ku[a,b,4];return(evalm(RezKu));end proc:Ku01:=Killing(1,2);Ku02:=Killing(1,3);Ku03:=Killing(1,4);Ku05:=Killing(1,5);Ku12:=Killing(2,3);Ku13:=Killing(2,4);Ku23:=Killing(3,4);Ku15:=Killing(2,5);Ku25:=Killing(3,5);Ku35:=Killing(4,5);Scalar generators related to Killing vectorsK01:=add(Ku01[i]*Dd[i],i=1..4);K02:=add(Ku02[i]*Dd[i],i=1..4);K03:=add(Ku03[i]*Dd[i],i=1..4);K05:=add(Ku05[i]*Dd[i],i=1..4);K12:=add(Ku12[i]*Dd[i],i=1..4);K13:=add(Ku13[i]*Dd[i],i=1..4);K23:=add(Ku23[i]*Dd[i],i=1..4);K15:=add(Ku15[i]*Dd[i],i=1..4);K25:=add(Ku25[i]*Dd[i],i=1..4);K35:=add(Ku35[i]*Dd[i],i=1..4);Omega matrix and spin termsOaux:=array(1..4,1..4);Omega:=proc(ku::array(1..4))::array(1..4,1..4); local cucu1, cucu2, cucu,i,j; global E,H,Xu,Oaux; for i from 1 to 4 do; for j from 1 to 4 do; cucu1:=H[i,1]*diff(ku[1],Xu[j])+H[i,2]*diff(ku[2],Xu[j])+H[i,3]*diff(ku[3],Xu[j])+H[i,4]*diff(ku[4],Xu[j]);cucu2:= diff(H[i,j],Xu[1])*ku[1]+diff(H[i,j],Xu[2])*ku[2]+diff(H[i,j],Xu[3])*ku[3]+diff(H[i,j],Xu[4])*ku[4]; cucu:=simplify(cucu1+cucu2);Oaux[i,j]:=cucu; end do;end do;evalm(simplify(multiply(multiply(Oaux,E),eta)));end proc:SpinTerm:=proc(ku::array(1..4))::array(1..4,1..4);global Oaux,Omega;evalm(-Omega(ku)[1,2]*S12-Omega(ku)[1,3]*S13-Omega(ku)[1,4]*S14+Omega(ku)[2,3]*S23+Omega(ku)[2,4]*S24+Omega(ku)[3,4]*S34);end proc:Conserved Dirac operatorsThe Hamiltonian operatorHam:=simplify(evalm(evalm(-I*omega*K05*Id)+omega*SpinTerm(Ku05)));HH:=map(StandardForm,simplify(ProdD(Ham,Ham)));simplify(ComD(OpD,Ham));Total angular momentumJ1:=evalm(evalm(-I*K23*Id)+SpinTerm(Ku23));J2:=evalm(evalm(I*K13*Id)-SpinTerm(Ku13)):J3:=evalm(evalm(-I*K12*Id)+SpinTerm(Ku12)):JJ:=simplify(evalm(ProdD(J1,J1)+ProdD(J2,J2)+ProdD(J3,J3))):Lorentz boostK1:=evalm(evalm(-I*K01*Id)+SpinTerm(Ku01));K2:=evalm(evalm(-I*K02*Id)+SpinTerm(Ku02)):K3:=evalm(evalm(-I*K03*Id)+SpinTerm(Ku03)):KK:=simplify(evalm(ProdD(K1,K1)+ProdD(K2,K2)+ProdD(K3,K3))):Runge-Lenz operatorR1:=evalm(evalm(-I*K15*Id)+SpinTerm(Ku15));R2:=evalm(evalm(-I*K25*Id)+SpinTerm(Ku25)):R3:=evalm(evalm(-I*K35*Id)+SpinTerm(Ku35)):RR:=simplify(evalm(ProdD(R1,R1)+ProdD(R2,R2)+ProdD(R3,R3))):MomentumP1:=simplify(evalm(-omega*(R1+K1)));P2:=simplify(evalm(-omega*(R2+K2))):P3:=simplify(evalm(-omega*(R3+K3))):PP:=simplify(evalm(ProdD(P1,P1)+ProdD(P2,P2)+ProdD(P3,P3))):Q1:=simplify(evalm(-omega*(R1-K1)));Q2:=simplify(evalm(-omega*(R2-K2))):Q3:=simplify(evalm(-omega*(R3-K3))):QQ:=simplify(evalm(ProdD(Q1,Q1)+ProdD(Q2,Q2)+ProdD(Q3,Q3))):QP:=map(StandardForm,simplify(evalm(ProdD(Q1,P1)+ProdD(Q2,P2)+ProdD(Q3,P3)))):Algebra#simplify(evalm(ComD(J1,J2)-I*J3));#simplify(evalm(ComD(R1,R2)-I*J3));#simplify(evalm(ComD(K1,K2)+I*J3));#simplify(evalm(ComD(K1,R1)+I*Ham/omega));#ComD(evalm(AA+JJ),R1);Casimir operatorsCas1:=map(StandardForm,simplify(evalm((-JJ-RR+KK)*omega^2+HH))):simplify(evalm(HH+3*I*omega*Ham-QP-omega^2*JJ-Cas1));DD:=ProdD(OpD,OpD):Test:=simplify(evalm(Cas1-DD));CasSO4:=simplify(evalm(JJ+RR)):StandardForm(CasSO4[1,1]):Wu0:=simplify(evalm(ProdD(J1,R1)+ProdD(J2,R2)+ProdD(J3,R3))):Wu1:=simplify(evalm(ProdD(K3,R2)-ProdD(K2,R3)-ProdD(Ham,J1)/omega)):Wu2:=simplify(evalm(ProdD(K1,R3)-ProdD(K3,R1)-ProdD(Ham,J2)/omega)):Wu3:=simplify(evalm(ProdD(K2,R1)-ProdD(K1,R2)-ProdD(Ham,J3)/omega)):Wu5:=simplify(evalm(ProdD(J1,K1)+ProdD(J2,K2)+ProdD(J3,K3))):WW:=simplify(evalm(ProdD(Wu0,Wu0)-ProdD(Wu1,Wu1)-ProdD(Wu2,Wu2)-ProdD(Wu3,Wu3)-ProdD(Wu5,Wu5))):Cas2:=evalm(-omega^2*WW):simplify(evalm(-Cas2+3/4*DD+3/16*omega^2*Id));ComD(WW,R1);#ComD(WW,J1):#ComD(WW,K1):#ComD(WW,Ham):#simplify(evalm(ComD(J1,R2)-I*R3)):#simplify(evalm(ComD(J1,K2)-I*K3)):#implify(evalm(ComD(R1,K2))):TTdSMApJQVJUQUJMRV9TQVZFLzE4NDQ2NzQ0MDc0MzI4NjA1MjcwWCwlKWFueXRoaW5nRzYiRiVbZ2whIiUhISEjOiImIiYiIiIiIiFGJ0YnRidGJyEiIkYnRidGJ0YnRidGKEYnRidGJ0YnRidGKEYnRidGJ0YnRidGKEYlTTdSMApJQVJUQUJMRV9TQVZFLzE4NDQ2NzQ0MDc0MzI4NjA1OTkwWCwlKWFueXRoaW5nRzYiRiVbZ2whIiUhISEjMSIlIiUiIiIiIiFGJ0YnRichIiJGJ0YnRidGJ0YoRidGJ0YnRidGKEYlTTdSMApJQVJUQUJMRV9TQVZFLzE4NDQ2NzQ0MDc0MzY4MzQ5MTE4WCwlKWFueXRoaW5nRzYiRiVbZ2whIiUhISEjMSIlIiUiIiIiIiFGJ0YnRidGJkYnRidGJ0YnISIiRidGJ0YnRidGKEYl