Einstein Eqs. in Kerr (-Newman) metricLUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYkLUkjbWlHRiQ2JVEocmVzdGFydEYnLyUnaXRhbGljR1EldHJ1ZUYnLyUsbWF0aHZhcmlhbnRHUSdpdGFsaWNGJy1JI21vR0YkNi1RIjtGJy9GM1Enbm9ybWFsRicvJSZmZW5jZUdRJmZhbHNlRicvJSpzZXBhcmF0b3JHRjEvJSlzdHJldGNoeUdGPS8lKnN5bW1ldHJpY0dGPS8lKGxhcmdlb3BHRj0vJS5tb3ZhYmxlbGltaXRzR0Y9LyUnYWNjZW50R0Y9LyUnbHNwYWNlR1EmMC4wZW1GJy8lJ3JzcGFjZUdRLDAuMjc3Nzc3OGVtRic=with(linalg):n:=4;NiI=QyU+SSJRRzYiIiIhIiIiKihJIiVHRiVGJ0klS2VyckdGJUYnSSdtZXRyaWNHRiVGJw==Coordinates Xu=[t, x1, x2 , x3, ...] Xu:=array(1..n,[t,r,theta,phi]);dXu:=array(1..n,[dt,dr,dth,dph]);Line element of signature (+, -, -, -... ) :QyQ+SSRyaG9HNiItSSVzcXJ0R0YlNiMsJiokSSJyR0YlIiIjIiIiKiZJImFHRiVGLC1JJGNvc0dGJTYjSSZ0aGV0YUdGJUYsRi1GLQ==QyQ+SSZkZWx0YUc2IiwqKiZJIk1HRiUiIiJJInJHRiVGKSEiIyokSSJRR0YlIiIjRikqJEkiYUdGJUYuRikqJEYqRi5GKUYpQyQ+SSVsaW5lRzYiLCgqKCwmSSNkdEdGJSIiIiooSSJhR0YlRiotSSRzaW5HRiU2I0kmdGhldGFHRiUiIiNJJGRwaEdGJUYqISIiRjFJJmRlbHRhR0YlRipJJHJob0dGJSEiI0YqKiYsJiomSSNkckdGJUYxRjRGM0YqKiRJJGR0aEdGJUYxRipGKkY1RjFGMyooLCYqJiwmKiRGLEYxRioqJEkickdGJUYxRipGKkYyRipGKiomRixGKkYpRipGM0YxRi1GMUY1RjZGM0YqCovariant components of the metric tensor, LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYoLUkjbWlHRiQ2I1EhRictRiM2KC1JJW1zdWJHRiQ2JS1GLDYmUSJnRicvJSVzaXplR1EjMTRGJy8lJ2l0YWxpY0dRJXRydWVGJy8lLG1hdGh2YXJpYW50R1EnaXRhbGljRictRiM2Ji1GLDYmUSNpakYnRjdGOkY9RjdGOkY9LyUvc3Vic2NyaXB0c2hpZnRHUSIwRictSSNtb0dGJDYvUSI9RidGN0Y6Rj0vJSZmZW5jZUdRJmZhbHNlRicvJSpzZXBhcmF0b3JHRk4vJSlzdHJldGNoeUdGTi8lKnN5bW1ldHJpY0dGTi8lKGxhcmdlb3BHRk4vJS5tb3ZhYmxlbGltaXRzR0ZOLyUnYWNjZW50R0ZOLyUnbHNwYWNlR1EsMC4yNzc3Nzc4ZW1GJy8lJ3JzcGFjZUdGZ24tRjI2JS1GLDYmUSRHZGRGJ0Y3RjpGPS1GIzYoLUYsNiZRImlGJ0Y3RjpGPS1GSTYvUSIsRidGN0Y6Rj1GTC9GUEY8RlFGU0ZVRldGWS9GZm5RJjAuMGVtRicvRmluUSwwLjMzMzMzMzNlbUYnLUYsNiZRImpGJ0Y3RjpGPUY3RjpGPUZFRjdGOkY9RitGN0Y6Rj0=Gdd:=array(symmetric,1..n,1..n):for i from 1 to n do for j from 1 to n do Der:=(1/2)*diff(line,dXu[i],dXu[j]);Gdd[i,j]:=simplify(Der,symbolic);end do;end do:print(Gdd);Contravariant components of the metric tensor, LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYoLUkjbWlHRiQ2I1EhRictRiM2KC1JJW1zdXBHRiQ2JS1GLDYmUSJnRicvJSVzaXplR1EjMTRGJy8lJ2l0YWxpY0dRJXRydWVGJy8lLG1hdGh2YXJpYW50R1EnaXRhbGljRictRiw2JlEjaWpGJ0Y3RjpGPS8lMXN1cGVyc2NyaXB0c2hpZnRHUSIwRictSSNtb0dGJDYvUSI9RidGN0Y6Rj0vJSZmZW5jZUdRJmZhbHNlRicvJSpzZXBhcmF0b3JHRkwvJSlzdHJldGNoeUdGTC8lKnN5bW1ldHJpY0dGTC8lKGxhcmdlb3BHRkwvJS5tb3ZhYmxlbGltaXRzR0ZMLyUnYWNjZW50R0ZMLyUnbHNwYWNlR1EsMC4yNzc3Nzc4ZW1GJy8lJ3JzcGFjZUdGZW4tSSVtc3ViR0YkNiUtRiw2JlEkR3V1RidGN0Y6Rj0tRiM2KC1GLDYmUSJpRidGN0Y6Rj0tRkc2L1EiLEYnRjdGOkY9RkovRk5GPEZPRlFGU0ZVRlcvRlpRJjAuMGVtRicvRmduUSwwLjMzMzMzMzNlbUYnLUYsNiZRImpGJ0Y3RjpGPUY3RjpGPS8lL3N1YnNjcmlwdHNoaWZ0R0ZFRjdGOkY9RitGN0Y6Rj0=Guu:=array(symmetric,1..n,1..n):Guu:=simplify(inverse(Gdd)):Id:=simplify(multiply(Guu,Gdd));Christoffel symbols LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYnLUkjbWlHRiQ2I1EhRictRiM2Jy1JJW1zdWJHRiQ2JS1GLDYlUSgmR2FtbWE7RicvJSdpdGFsaWNHUSV0cnVlRicvJSxtYXRodmFyaWFudEdRJ2l0YWxpY0YnLUYjNiUtRiw2JVEkaWprRidGN0Y6RjdGOi8lL3N1YnNjcmlwdHNoaWZ0R1EiMEYnLUkjbW9HRiQ2LlEiPUYnRjdGOi8lJmZlbmNlR1EmZmFsc2VGJy8lKnNlcGFyYXRvckdGSy8lKXN0cmV0Y2h5R0ZLLyUqc3ltbWV0cmljR0ZLLyUobGFyZ2VvcEdGSy8lLm1vdmFibGVsaW1pdHNHRksvJSdhY2NlbnRHRksvJSdsc3BhY2VHUSwwLjI3Nzc3NzhlbUYnLyUncnNwYWNlR0ZaLUYyNiUtRiw2JVElQ2RkZEYnRjdGOi1GIzYpLUYsNiVRImlGJ0Y3RjotRkY2LlEiLEYnRjdGOkZJL0ZNRjlGTkZQRlJGVEZWL0ZZUSYwLjBlbUYnL0ZmblEsMC4zMzMzMzMzZW1GJy1GLDYlUSJqRidGN0Y6RmFvLUYsNiVRImtGJ0Y3RjpGN0Y6RkJGN0Y6RitGN0Y6 and LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYnLUkjbWlHRiQ2I1EhRictRiM2Jy1JKG1zdWJzdXBHRiQ2Jy1GLDYlUSgmR2FtbWE7RicvJSdpdGFsaWNHUSV0cnVlRicvJSxtYXRodmFyaWFudEdRJ2l0YWxpY0YnLUYjNiUtRiw2JVEjaWpGJ0Y3RjpGN0Y6LUYsNiVRImtGJ0Y3RjovJTFzdXBlcnNjcmlwdHNoaWZ0R1EiMEYnLyUvc3Vic2NyaXB0c2hpZnRHRkctSSNtb0dGJDYuUSI9RidGN0Y6LyUmZmVuY2VHUSZmYWxzZUYnLyUqc2VwYXJhdG9yR0ZQLyUpc3RyZXRjaHlHRlAvJSpzeW1tZXRyaWNHRlAvJShsYXJnZW9wR0ZQLyUubW92YWJsZWxpbWl0c0dGUC8lJ2FjY2VudEdGUC8lJ2xzcGFjZUdRLDAuMjc3Nzc3OGVtRicvJSdyc3BhY2VHRmluLUklbXN1YkdGJDYlLUYsNiVRJUNkZHVGJ0Y3RjotRiM2KS1GLDYlUSJpRidGN0Y6LUZLNi5RIixGJ0Y3RjpGTi9GUkY5RlNGVUZXRllGZW4vRmhuUSYwLjBlbUYnL0Zbb1EsMC4zMzMzMzMzZW1GJy1GLDYlUSJqRidGN0Y6RmdvRkJGN0Y6RkhGN0Y6RitGN0Y6Cddd:=array(1..n,1..n,1..n):Cddu:=array(1..n,1..n,1..n):for i from 1 to n do for j from 1 to n dofor k from 1 to n doCddd[i,j,k]:=(1/2)*(diff(Gdd[i,k],Xu[j])+ diff(Gdd[j,k],Xu[i])-diff(Gdd[i,j],Xu[k])); end do; end do; end do:for i from 1 to n do for j from 1 to n dofor k from 1 to n dosym:=add(Guu[k,m]*Cddd[i,j,m],m=1..n);Cddu[i,j,k]:=sym; end do; end do; end do:Cd:=array(1..n):for i from 1 to n do sym:=add(Cddu[i,l,l],l=1..n); Cd[i]:=sym; end do: Riemann tensor LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYmLUklbXN1YkdGJDYlLUkjbWlHRiQ2JlEmUmRkZGRGJy8lJXNpemVHUSMxNEYnLyUnaXRhbGljR1EldHJ1ZUYnLyUsbWF0aHZhcmlhbnRHUSdpdGFsaWNGJy1GIzYsLUYvNiZRImlGJ0YyRjVGOC1JI21vR0YkNi9RIixGJ0YyRjVGOC8lJmZlbmNlR1EmZmFsc2VGJy8lKnNlcGFyYXRvckdGNy8lKXN0cmV0Y2h5R0ZGLyUqc3ltbWV0cmljR0ZGLyUobGFyZ2VvcEdGRi8lLm1vdmFibGVsaW1pdHNHRkYvJSdhY2NlbnRHRkYvJSdsc3BhY2VHUSYwLjBlbUYnLyUncnNwYWNlR1EsMC4zMzMzMzMzZW1GJy1GLzYmUSJqRidGMkY1RjhGQC1GLzYmUSJrRidGMkY1RjhGQC1GLzYmUSJsRidGMkY1RjhGMkY1RjgvJS9zdWJzY3JpcHRzaGlmdEdRIjBGJ0YyRjVGOA==Rdddd:=array(1..n,1..n,1..n,1..n);Ric_dd:=array(1..n,1..n);for i from 1 to n dofor k from 1 to n dofor l from 1 to n dofor m from 1 to n dococo:=1/2*simplify(diff(Gdd[i,m],Xu[k],Xu[l])+diff(Gdd[k,l],Xu[i],Xu[m])-diff(Gdd[i,l],Xu[k],Xu[m])-diff(Gdd[k,m],Xu[i],Xu[l]))+add(Cddd[k,l,p]*Cddu[i,m,p]-Cddd[k,m,p]*Cddu[i,l,p],p=1..n);Rdddd[i,k,l,m]:=simplify(coco,symbolic);end do;end do;end do;end do;for j from 1 to n dofor k from 1 to n doRic_dd[j,k]:=simplify(add(add(Guu[p,q]*Rdddd[j,p,k,q],q=1..n),p=1..n));end do;end do:Ricci tensor LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzY4LUkjbWlHRiQ2I1EhRictRiM2OC1JJW1zdWJHRiQ2Ji1GLDY2USJSRicvJSdmYW1pbHlHUTBUaW1lc35OZXd+Um9tYW5GJy8lJXNpemVHUSMxNEYnLyUlYm9sZEdRJmZhbHNlRicvJSdpdGFsaWNHUSV0cnVlRicvJSp1bmRlcmxpbmVHRj8vJSpzdWJzY3JpcHRHRj8vJSxzdXBlcnNjcmlwdEdGPy8lK2ZvcmVncm91bmRHUShbMCwwLDBdRicvJStiYWNrZ3JvdW5kR1EuWzI1NSwyNTUsMjU1XUYnLyUnb3BhcXVlR0Y/LyUrZXhlY3V0YWJsZUdGPy8lKXJlYWRvbmx5R0Y/LyUpY29tcG9zZWRHRj8vJSpjb252ZXJ0ZWRHRj8vJStpbXNlbGVjdGVkR0Y/LyUscGxhY2Vob2xkZXJHRj8vJTZzZWxlY3Rpb24tcGxhY2Vob2xkZXJHRj8vJTBmb250X3N0eWxlX25hbWVHUSpOb3JtYWwyNTZGJy8lLG1hdGh2YXJpYW50R1EnaXRhbGljRictRiM2Ni1GLDY2USNpakYnRjdGOkY9RkBGQ0ZFRkdGSUZMRk9GUUZTRlVGV0ZZRmVuRmduRmluRlxvRjdGOkY9RkBGQ0ZFRkdGSUZMRk9GUUZTRlVGV0ZZRmVuRmduRmluRlxvLyUvc3Vic2NyaXB0c2hpZnRHUSIwRidGZW4tSSNtb0dGJDY/USI9RidGN0Y6Rj1GQEZDRkVGR0ZJRkxGT0ZRRlNGVUZXRllGZW5GZ25GaW5GXG8vJSZmZW5jZUdGPy8lKnNlcGFyYXRvckdGPy8lKXN0cmV0Y2h5R0Y/LyUqc3ltbWV0cmljR0Y/LyUobGFyZ2VvcEdGPy8lLm1vdmFibGVsaW1pdHNHRj8vJSdhY2NlbnRHRj8vJSdsc3BhY2VHUSwwLjI3Nzc3NzhlbUYnLyUncnNwYWNlR0ZbcS1GMjYmLUYsNjZRJFJkZEYnRjdGOkY9RkBGQ0ZFRkdGSUZMRk9GUUZTRlVGV0ZZRmVuRmduRmluRlxvLUYjNjgtRiw2NlEiaUYnRjdGOkY9RkBGQ0ZFRkdGSUZMRk9GUUZTRlVGV0ZZRmVuRmduRmluRlxvLUZobzY/USIsRidGN0Y6Rj1GQEZDRkVGR0ZJRkxGT0ZRRlNGVUZXRllGZW5GZ25GaW5GXG9GW3AvRl5wRkJGX3BGYXBGY3BGZXBGZ3AvRmpwUSYwLjBlbUYnL0ZdcVEsMC4zMzMzMzMzZW1GJy1GLDY2USJqRidGN0Y6Rj1GQEZDRkVGR0ZJRkxGT0ZRRlNGVUZXRllGZW5GZ25GaW5GXG9GN0Y6Rj1GQEZDRkVGR0ZJRkxGT0ZRRlNGVUZXRllGZW5GZ25GaW5GXG9GZG9GZW5GN0Y6Rj1GQEZDRkVGR0ZJRkxGT0ZRRlNGVUZXRllGZW5GZ25GaW5GXG9GK0Y3RjpGPUZARkNGRUZHRklGTEZPRlFGU0ZVRldGWUZlbkZnbkZpbkZcbw== and LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzY4LUkjbWlHRiQ2I1EhRictRiM2OC1JKG1zdWJzdXBHRiQ2Jy1GLDY2USJSRicvJSdmYW1pbHlHUTBUaW1lc35OZXd+Um9tYW5GJy8lJXNpemVHUSMxNEYnLyUlYm9sZEdRJmZhbHNlRicvJSdpdGFsaWNHUSV0cnVlRicvJSp1bmRlcmxpbmVHRj8vJSpzdWJzY3JpcHRHRj8vJSxzdXBlcnNjcmlwdEdGPy8lK2ZvcmVncm91bmRHUShbMCwwLDBdRicvJStiYWNrZ3JvdW5kR1EuWzI1NSwyNTUsMjU1XUYnLyUnb3BhcXVlR0Y/LyUrZXhlY3V0YWJsZUdGPy8lKXJlYWRvbmx5R0Y/LyUpY29tcG9zZWRHRj8vJSpjb252ZXJ0ZWRHRj8vJStpbXNlbGVjdGVkR0Y/LyUscGxhY2Vob2xkZXJHRj8vJTZzZWxlY3Rpb24tcGxhY2Vob2xkZXJHRj8vJTBmb250X3N0eWxlX25hbWVHUSpOb3JtYWwyNTZGJy8lLG1hdGh2YXJpYW50R1EnaXRhbGljRictRiM2Ni1GLDY2USJpRidGN0Y6Rj1GQEZDRkVGR0ZJRkxGT0ZRRlNGVUZXRllGZW5GZ25GaW5GXG9GN0Y6Rj1GQEZDRkVGR0ZJRkxGT0ZRRlNGVUZXRllGZW5GZ25GaW5GXG8tRiw2NlEiakYnRjdGOkY9RkBGQ0ZFRkdGSUZMRk9GUUZTRlVGV0ZZRmVuRmduRmluRlxvLyUxc3VwZXJzY3JpcHRzaGlmdEdRIjBGJy8lL3N1YnNjcmlwdHNoaWZ0R0Zpby1JI21vR0YkNj9RIj1GJ0Y3RjpGPUZARkNGRUZHRklGTEZPRlFGU0ZVRldGWUZlbkZnbkZpbkZcby8lJmZlbmNlR0Y/LyUqc2VwYXJhdG9yR0Y/LyUpc3RyZXRjaHlHRj8vJSpzeW1tZXRyaWNHRj8vJShsYXJnZW9wR0Y/LyUubW92YWJsZWxpbWl0c0dGPy8lJ2FjY2VudEdGPy8lJ2xzcGFjZUdRLDAuMjc3Nzc3OGVtRicvJSdyc3BhY2VHRmBxLUklbXN1YkdGJDYmLUYsNjZRJFJ1ZEYnRjdGOkY9RkBGQ0ZFRkdGSUZMRk9GUUZTRlVGV0ZZRmVuRmduRmluRlxvLUYjNjhGYW8tRl1wNj9RIixGJ0Y3RjpGPUZARkNGRUZHRklGTEZPRlFGU0ZVRldGWUZlbkZnbkZpbkZcb0ZgcC9GY3BGQkZkcEZmcEZocEZqcEZccS9GX3FRJjAuMGVtRicvRmJxUSwwLjMzMzMzMzNlbUYnRmRvRjdGOkY9RkBGQ0ZFRkdGSUZMRk9GUUZTRlVGV0ZZRmVuRmduRmluRlxvRmpvRmVuRjdGOkY9RkBGQ0ZFRkdGSUZMRk9GUUZTRlVGV0ZZRmVuRmduRmluRlxvRitGN0Y6Rj1GQEZDRkVGR0ZJRkxGT0ZRRlNGVUZXRllGZW5GZ25GaW5GXG8=Rdd:=Ric_dd:Rud:=simplify(multiply(Guu,Rdd)):Rsc:=simplify(add(Rud[s,s],s=1..n));for k from 1 to n dofor i from k to n do rezu:=Rud[k,i]; print(Ricci_ud[k,i],rezu); end do; end do: Einstein tensor LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYlLUkjbWlHRiQ2JVEkRXVkRicvJSdpdGFsaWNHUSV0cnVlRicvJSxtYXRodmFyaWFudEdRJ2l0YWxpY0YnRi9GMg==Eud:=array(1..n,1..n):for i from 1 to n dofor j from 1 to n doEud[i,j]:=simplify(Rud[i,j]-(1/2)*Rsc*Id[i,j]); end do;end do:for k from 1 to n dofor i from k to n do rez:=Eud[k,i]; print(Ein_ud[k,i],rez); end do; end do:Gravitational sources (density sigma and pressure p)QyQ+SSZzaWdtYUc2IiomLUkpc2ltcGxpZnlHNiQlKnByb3RlY3RlZEdJKF9zeXNsaWJHRiU2IyZJJEV1ZEdGJTYkIiIiRjBGMC1JIi9HRik2IywkKiZJI1BpR0YqRjBJIkdHRiVGMCIiKUYwRjA=QyQ+SSJwRzYiLCQqJiZJJEV1ZEdGJTYkIiIjRisiIiItSSIvRzYkJSpwcm90ZWN0ZWRHSShfc3lzbGliR0YlNiMsJComSSNQaUdGMEYsSSJHR0YlRiwiIilGLCEiIkYsRiemann tensorNiI=LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYjLUkjbWlHRiQ2I1EhRic=