BH01 Light from Schwarzschild black holes (I.I. Cotaescu)Conserved quantities in BH comoving frame E0,P01,P02,...Conserved quantities in Observer's frame: E,P1,P2,....Final results after fixing the angle LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYwLUkjbWlHRiQ2JlEmYWxwaGFGJy8lJ2l0YWxpY0dRJmZhbHNlRicvJStmb3JlZ3JvdW5kR1EqWzAsMCwyNTVdRicvJSxtYXRodmFyaWFudEdRJ25vcm1hbEYnLUkjbW9HRiQ2LlEiOkYnRjJGNS8lJmZlbmNlR0YxLyUqc2VwYXJhdG9yR0YxLyUpc3RyZXRjaHlHRjEvJSpzeW1tZXRyaWNHRjEvJShsYXJnZW9wR0YxLyUubW92YWJsZWxpbWl0c0dGMS8lJ2FjY2VudEdGMS8lJ2xzcGFjZUdRLDAuMjc3Nzc3OGVtRicvJSdyc3BhY2VHRkwtRjk2LlEifkYnRjJGNUY8Rj5GQEZCRkRGRkZIL0ZLUSYwLjBlbUYnL0ZORlMtRiw2JlEmRV9yZXpGJy9GMFEldHJ1ZUYnRjIvRjZRJ2l0YWxpY0YnLUY5Ni5RIixGJ0YyRjVGPC9GP0ZZRkBGQkZERkZGSEZSL0ZOUSwwLjMzMzMzMzNlbUYnLUYsNiZRJ1AxX3JlekYnRlhGMkZaRmZuLUYsNiZRJ1AyX3JlekYnRlhGMkZaRmZuLUY5Ni5RIy4uRidGMkY1RjxGPkZARkJGREZGRkgvRktRLDAuMjIyMjIyMmVtRidGVEZib0ZPRjJGNQ==omega[H]=omegaLUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYkLUkjbWlHRiQ2JVEocmVzdGFydEYnLyUnaXRhbGljR1EldHJ1ZUYnLyUsbWF0aHZhcmlhbnRHUSdpdGFsaWNGJy1JI21vR0YkNi1RIjtGJy9GM1Enbm9ybWFsRicvJSZmZW5jZUdRJmZhbHNlRicvJSpzZXBhcmF0b3JHRjEvJSlzdHJldGNoeUdGPS8lKnN5bW1ldHJpY0dGPS8lKGxhcmdlb3BHRj0vJS5tb3ZhYmxlbGltaXRzR0Y9LyUnYWNjZW50R0Y9LyUnbHNwYWNlR1EmMC4wZW1GJy8lJ3JzcGFjZUdRLDAuMjc3Nzc3OGVtRic=QyQtSSdhc3N1bWVHNiI2JS1JIj5HJSpwcm90ZWN0ZWRHNiRJIlZHRiUiIiEtRig2JEkmZGVsdGFHRiVGLC1GKDYkSSZvbWVnYUdGJUYsIiIimetric5:=<<1|0|0|0|0>,<0|-1|0|0|0>,<0|0|-1|0|0>,<0|0|0|-1|0>,<0|0|0|0|-1>>:Id_5:=<<1|0|0|0|0>,<0|1|0|0|0>,<0|0|1|0|0>,<0|0|0|1|0>,<0|0|0|0|1>>:eta:=<<1|0|0|0>,<0|-1|0|0>,<0|0|-1|0>,<0|0|0|-1>>:Id:=<<1|0|0|0>,<0|1|0|0>,<0|0|1|0>,<0|0|0|1>>:QyY+SSJkRzYiKiZJJmRlbHRhR0YlIiIiSSZvbWVnYUdGJSEiIkYoPkkiUkdGJSomRiRGKEkjeGlHRiVGKEYoTranslations generated by LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYmLUklbXN1YkdGJDYlLUkjbWlHRiQ2JlEiUEYnLyUnaXRhbGljR1EldHJ1ZUYnLyUrZm9yZWdyb3VuZEdRKlswLDAsMjU1XUYnLyUsbWF0aHZhcmlhbnRHUSdpdGFsaWNGJy1GIzYmLUYvNiZRImlGJ0YyRjVGOEYyRjVGOC8lL3N1YnNjcmlwdHNoaWZ0R1EiMEYnRjJGNUY4P_mat:=proc(x,y,z) local mat; mat:= I*omega*(<<0|x|y|z|0>,<x|0|0|0|x>,<y|0|0|0|y>,<z|0|0|0|z>,<0|-x|-y|-z|0>>);mat;end proc:Trans_P:=proc(x,y,z) global Id_5,P_mat; return evalm(Id_5-I*P_mat(x,y,z)-(1/2)*(P_mat(x,y,z).P_mat(x,y,z)));end proc:QyQ+SSVUcmFuRzYiLUkoVHJhbnNfUEdGJTYlSSJkR0YlIiIhRioiIiI=Boosts generated by LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYmLUklbXN1YkdGJDYlLUkjbWlHRiQ2JlEiS0YnLyUnaXRhbGljR1EldHJ1ZUYnLyUrZm9yZWdyb3VuZEdRKlswLDAsMjU1XUYnLyUsbWF0aHZhcmlhbnRHUSdpdGFsaWNGJy1GIzYmLUYvNiZRImlGJ0YyRjVGOEYyRjVGOC8lL3N1YnNjcmlwdHNoaWZ0R1EiMEYnRjJGNUY4K_mat:=proc(x,y,z) return matrix(5,5,[[0,x,y,z,0],[x,0,0,0,0],[y,0,0,0,0],[z,0,0,0,0],[0,0,0,0,0]]);end proc:Boost_K:=proc(x,y,z) global Id_5, K_mat; local r,A; r:=sqrt(x^2+y^2+z^2);A:=evalm(K_mat(x,y,z)/r);return simplify(evalm(Id_5 + A.A*(cosh(r)-1)+sinh(r)*A),symbolic);end proc:QyQ+SSViZXRhRzYiLUkoYXJjdGFuaEdGJTYjSSJWR0YlIiIiQyQ+SSRMb3JHNiItSShCb29zdF9LR0YlNiVJJWJldGFHRiUiIiFGKiIiIg==Initial conserved quantities in O_BH Eqs. (38)-(41)QyQ+SSNFMEc2Ikkia0dGJSIiIg==Qyg+SSRQMDFHNiIsJComSSJrR0YlIiIiLUkkY29zRzYkJSpwcm90ZWN0ZWRHSShfc3lzbGliR0YlNiNJJmFscGhhR0YlRikhIiJGKT5JJFAwMkdGJSwkKiZGKEYpLUkkc2luR0YsRi9GKUYxRik+SSRQMDNHRiUiIiFGKQ==Qyg+SSRRMDFHNiIqJkkia0dGJSIiIiwoKigtSSRjb3NHNiQlKnByb3RlY3RlZEdJKF9zeXNsaWJHRiU2I0kmYWxwaGFHRiVGKEkmZGVsdGFHRiUiIiNJI3hpR0YlRjNGKCooLUkkc2luR0YtRjBGKEYyRihGNEYoISIjRishIiJGKEYoPkkkUTAyR0YlKiZGJ0YoLCgqKEY2RihGMkYzRjRGM0YoKihGK0YoRjJGKEY0RihGM0Y2RjlGKEYoPkkkUTAzR0YlIiIhRig=Qyg+SSRMMDNHNiIqKkkmZGVsdGFHRiUiIiJJImtHRiVGKEkjeGlHRiVGKEkmb21lZ2FHRiUhIiJGKD5JJEwwMUdGJSIiIUYoPkkkTDAyR0YlRi9GKA==Invariant (30)LUkpc2ltcGxpZnlHNiQlKnByb3RlY3RlZEdJKF9zeXNsaWJHNiI2IywsKiRJI0UwR0YnIiIjIiIiKiZJJm9tZWdhR0YnRiwsKCokSSRMMDFHRidGLEYtKiRJJEwwMkdGJ0YsRi0qJEkkTDAzR0YnRixGLUYtISIiKiZJJFAwMUdGJ0YtSSRRMDFHRidGLUY3KiZJJFAwMkdGJ0YtSSRRMDJHRidGLUY3KiZJJFAwM0dGJ0YtSSRRMDNHRidGLUY3K , R and L components of the tensor Gen as in Eqs.(31). Notation (32) K(x,P)=GenQyg+SSRLMDFHNiIqJiwmSSRRMDFHRiUiIiJJJFAwMUdGJSEiIkYpLUkiL0c2JCUqcHJvdGVjdGVkR0koX3N5c2xpYkdGJTYjLCRJJm9tZWdhR0YlIiIjRilGKT5JJEswMkdGJSomLCZJJFEwMkdGJUYpSSRQMDJHRiVGK0YpRixGKUYpPkkkSzAzR0YlKiYsJkkkUTAzR0YlRilJJFAwM0dGJUYrRilGLEYpRik=Qyg+SSRSMDFHNiIqJiwmSSRRMDFHRiUhIiJJJFAwMUdGJUYpIiIiLUkiL0c2JCUqcHJvdGVjdGVkR0koX3N5c2xpYkdGJTYjLCRJJm9tZWdhR0YlIiIjRitGKz5JJFIwMkdGJSomLCZJJFEwMkdGJUYpSSRQMDJHRiVGKUYrRixGK0YrPkkkUjAzR0YlKiYsJkkkUTAzR0YlRilJJFAwM0dGJUYpRitGLEYrRis=QyQ+SSRHZW5HNiItSSdtYXRyaXhHNiQlKnByb3RlY3RlZEdJKF9zeXNsaWJHRiU2JSIiJkYsNyc3JyIiISomSSZvbWVnYUdGJSIiIkkkSzAxR0YlRjIqJkYxRjJJJEswMkdGJUYyKiZGMUYySSRLMDNHRiVGMkkjRTBHRiU3JywkRjAhIiJGLyomRjFGMkkkTDAzR0YlRjIsJComRjFGMkkkTDAyR0YlRjJGOyomRjFGMkkkUjAxR0YlRjI3JywkRjRGOywkRjxGO0YvKiZGMUYySSRMMDFHRiVGMiomRjFGMkkkUjAyR0YlRjI3JywkRjZGO0Y/LCRGRkY7Ri8qJkYxRjJJJFIwM0dGJUYyNycsJEY4RjssJEZBRjssJEZIRjssJEZNRjtGL0Y7SO(1,4) matrix transforming Gen-> GEN. The components of GEN are the conserved quantities in O TTB:=simplify(evalm(metric5.Lor.Tran.metric5));GEN:=simplify(evalm(TTB.Gen.transpose(TTB))):LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzY1LUkjbWlHRiQ2JlEkVGhlRicvJSdpdGFsaWNHUSZmYWxzZUYnLyUrZm9yZWdyb3VuZEdRKlswLDAsMjU1XUYnLyUsbWF0aHZhcmlhbnRHUSdub3JtYWxGJy1JI21vR0YkNi5RIn5GJ0YyRjUvJSZmZW5jZUdGMS8lKnNlcGFyYXRvckdGMS8lKXN0cmV0Y2h5R0YxLyUqc3ltbWV0cmljR0YxLyUobGFyZ2VvcEdGMS8lLm1vdmFibGVsaW1pdHNHRjEvJSdhY2NlbnRHRjEvJSdsc3BhY2VHUSYwLjBlbUYnLyUncnNwYWNlR0ZMLUYsNiZRK2NvbXBvbmVudHNGJ0YvRjJGNUY4LUY5NjBRI2luRicvJSVib2xkR1EldHJ1ZUYnRjIvRjZRJWJvbGRGJy8lK2ZvbnR3ZWlnaHRHRllGPEY+RkBGQkZERkZGSEZKRk1GOC1GLDYmUSJPRidGL0YyRjUtRjk2LlEiLEYnRjJGNUY8L0Y/RldGQEZCRkRGRkZIRkovRk5RLDAuMzMzMzMzM2VtRidGOEY4LUYsNiZRJEVxc0YnRi9GMkY1LUY5Ni5RIi5GJ0YyRjVGPEY+RkBGQkZERkZGSEZKRk1GOC1JKG1mZW5jZWRHRiQ2JS1GIzYmLUkjbW5HRiQ2JVEjNDZGJ0YyRjUvJStleGVjdXRhYmxlR0ZXLyUwZm9udF9zdHlsZV9uYW1lR1EpMkR+SW5wdXRGJ0Y1RjJGNS1GOTYuUSomdW1pbnVzMDtGJ0YyRjVGPEY+RkBGQkZERkZGSC9GS1EsMC4yMjIyMjIyZW1GJy9GTkZncC1GZm82JS1GIzYmLUZbcDYlUSM1MUYnRjJGNUZecEZgcEY1RjJGNUZecEZgcEY1E:=simplify(GEN[1,5],symbolic);P1:=simplify(-(GEN[1,2]+GEN[2,5]),symbolic);P2:=simplify(-(GEN[1,3]+GEN[3,5]));P3:=simplify(-(GEN[1,4]+GEN[4,5]));Q1:=simplify(-(GEN[2,5]-GEN[1,2]));Q2:=simplify(-(GEN[3,5]-GEN[1,3]));Q3:=simplify(-(GEN[4,5]-GEN[1,4]));L3:=collect(simplify(GEN[2,3]/omega),delta);L1:=GEN[3,4]/omega;L2:=GEN[4,2]/omega;Invariant (30)QyQtSSlzaW1wbGlmeUc2JCUqcHJvdGVjdGVkR0koX3N5c2xpYkc2IjYjLCwqJEkiRUdGKCIiIyIiIiomSSZvbWVnYUdGKEYtLCgqJEkjTDFHRihGLUYuKiRJI0wyR0YoRi1GLiokSSNMM0dGKEYtRi5GLiEiIiomSSNQMUdGKEYuSSNRMUdGKEYuRjgqJkkjUDJHRihGLkkjUTJHRihGLkY4KiZJI1AzR0YoRi5JI1EzR0YoRi5GOEYuSolving equation J12=0 with the trick LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYpLUkjbWlHRiQ2JlEkdGF1RicvJSdpdGFsaWNHUSV0cnVlRicvJStmb3JlZ3JvdW5kR1EqWzAsMCwyNTVdRicvJSxtYXRodmFyaWFudEdRJ2l0YWxpY0YnLUkjbW9HRiQ2L1EiPUYnRi9GMkY1LyUmZmVuY2VHUSZmYWxzZUYnLyUqc2VwYXJhdG9yR0Y+LyUpc3RyZXRjaHlHRj4vJSpzeW1tZXRyaWNHRj4vJShsYXJnZW9wR0Y+LyUubW92YWJsZWxpbWl0c0dGPi8lJ2FjY2VudEdGPi8lJ2xzcGFjZUdRLDAuMjc3Nzc3OGVtRicvJSdyc3BhY2VHRk0tRiw2JlEkdGFuRidGL0YyRjUtSShtZmVuY2VkR0YkNiYtRiM2Ji1JJm1mcmFjR0YkNiktRiw2JlEmYWxwaGFGJ0YvRjJGNS1GIzYmLUkjbW5HRiQ2JlEiMkYnRi9GMkY1Ri9GMkY1LyUubGluZXRoaWNrbmVzc0dRIjFGJy8lK2Rlbm9tYWxpZ25HUSdjZW50ZXJGJy8lKW51bWFsaWduR0Zjby8lKWJldmVsbGVkR0Y+RjJGL0YyRjVGL0YyRjVGL0YyRjU=QyQ+SSNFcUc2Ii1JKGNvbGxlY3RHNiQlKnByb3RlY3RlZEdJKF9zeXNsaWJHRiU2JC1JJm51bWVyR0YpNiMqJkkjTDNHRiUiIiItSSIvR0YoNiMsJComSSJrR0YlRjFJJm9tZWdhR0YlRjEiIiNGMS1JJHNpbkdGKDYjSSZhbHBoYUdGJUYxQyQ+SSN0ckc2IjwkLy1JJGNvc0c2JCUqcHJvdGVjdGVkR0koX3N5c2xpYkdGJTYjSSZhbHBoYUdGJSomLCYqJEkkdGF1R0YlIiIjISIiIiIiRjVGNSwmRjFGNUY1RjVGNC8tSSRzaW5HRipGLSwkKiZGMkY1RjZGNEYzRjU=QyQ+SSNlcUc2Ii1JKGNvbGxlY3RHNiQlKnByb3RlY3RlZEdJKF9zeXNsaWJHRiU2JC1JJm51bWVyR0YpNiMtSSlzaW1wbGlmeUdGKDYjLUklc3Vic0dGKTYkSSN0ckdGJUkjRXFHRiVJJHRhdUdGJSIiIg==QyQ+SSRzb2xHNiItSSZzb2x2ZUdGJTYkSSNlcUdGJUkkdGF1R0YlIiIiSelecting solutionsQyY+SSZzaW5hMUc2Ii1JKXNpbXBsaWZ5RzYkJSpwcm90ZWN0ZWRHSShfc3lzbGliR0YlNiQsJComJkkkc29sR0YlNiMiIiJGMSwmKiRGLiIiI0YxRjFGMSEiIkY0SSlzeW1ib2xpY0dGJUY1LUYnNiQtSSdzZXJpZXNHRik2JUYkL0kjeGlHRiUiIiEiIiRGNkYxQyY+SSZjb3NhMUc2IiomLCYqJCZJJHNvbEdGJTYjIiIiIiIjISIiRixGLEYsLCZGKEYsRixGLEYuRi4tSSlzaW1wbGlmeUc2JCUqcHJvdGVjdGVkR0koX3N5c2xpYkdGJTYkLUknc2VyaWVzR0YzNiVGJC9JI3hpR0YlIiIhIiIkSSlzeW1ib2xpY0dGJUYsQyY+SSZzaW5hMkc2Ii1JKXNpbXBsaWZ5RzYkJSpwcm90ZWN0ZWRHSShfc3lzbGliR0YlNiQsJComJkkkc29sR0YlNiMiIiMiIiIsJiokRi5GMUYyRjJGMiEiIkYxSSlzeW1ib2xpY0dGJUY1LUYnNiQtSSdzZXJpZXNHRik2JUYkL0kjeGlHRiUiIiEiIiVGNkYyQyY+SSZjb3NhMkc2Ii1JKXNpbXBsaWZ5RzYkJSpwcm90ZWN0ZWRHSShfc3lzbGliR0YlNiQqJiwmKiQmSSRzb2xHRiU2IyIiI0YyISIiIiIiRjRGNCwmRi5GNEY0RjRGM0kpc3ltYm9saWNHRiVGMy1GJzYkLUknc2VyaWVzR0YpNiVGJC9JI3hpR0YlIiIhIiInRjZGNA==Final rezults: conserved quantities in O with sin/cos alpha given by Eqs. (32)/(33)QyQ+SSZFX3Jlekc2Ii1JKXNpbXBsaWZ5RzYkJSpwcm90ZWN0ZWRHSShfc3lzbGliR0YlNiQtSSVzdWJzR0YpNiUvLUkkc2luR0YoNiNJJmFscGhhR0YlSSZzaW5hMkdGJS8tSSRjb3NHRihGMkkmY29zYTJHRiVJIkVHRiVJKXN5bWJvbGljR0YlISIiQyQ+SSdQMV9yZXpHNiItSSlzaW1wbGlmeUc2JCUqcHJvdGVjdGVkR0koX3N5c2xpYkdGJTYkLUklc3Vic0dGKTYlLy1JJHNpbkdGKDYjSSZhbHBoYUdGJUkmc2luYTJHRiUvLUkkY29zR0YoRjJJJmNvc2EyR0YlSSNQMUdGJUkpc3ltYm9saWNHRiUhIiI=QyQ+SSdQMl9yZXpHNiItSSlzaW1wbGlmeUc2JCUqcHJvdGVjdGVkR0koX3N5c2xpYkdGJTYkLUklc3Vic0dGKTYlLy1JJHNpbkdGKDYjSSZhbHBoYUdGJUkmc2luYTJHRiUvLUkkY29zR0YoRjJJJmNvc2EyR0YlSSNQMkdGJUkpc3ltYm9saWNHRiUhIiI=QyQ+SSdRMV9yZXpHNiItSSlzaW1wbGlmeUc2JCUqcHJvdGVjdGVkR0koX3N5c2xpYkdGJTYkLUklc3Vic0dGKTYlLy1JJHNpbkdGKDYjSSZhbHBoYUdGJUkmc2luYTJHRiUvLUkkY29zR0YoRjJJJmNvc2EyR0YlSSNRMUdGJUkpc3ltYm9saWNHRiUhIiI=QyQ+SSdRMl9yZXpHNiItSSlzaW1wbGlmeUc2JCUqcHJvdGVjdGVkR0koX3N5c2xpYkdGJTYkLUklc3Vic0dGKTYlLy1JJHNpbkdGKDYjSSZhbHBoYUdGJUkmc2luYTJHRiUvLUkkY29zR0YoRjJJJmNvc2EyR0YlSSNRMkdGJUkpc3ltYm9saWNHRiUhIiI=Verify Eq. (59) QyQ+SSNQUEc2IiwmKiRJI1AxR0YlIiIjIiIiKiRJI1AyR0YlRilGKiEiIg==QyQ+SSxzaW5hX3NxX29ic0c2IiomSSNQMkdGJSIiI0kjUFBHRiUhIiJGKg==QyQ+SSROdW1HNiItSSZudW1lckclKnByb3RlY3RlZEc2I0ksc2luYV9zcV9vYnNHRiUhIiI=QyQ+SSREZW5HNiItSSZkZW5vbUclKnByb3RlY3RlZEc2I0ksc2luYV9zcV9vYnNHRiUhIiI=QyQ+SSVOdW0xRzYiLUklc3Vic0clKnByb3RlY3RlZEc2JS8tSSRzaW5HNiRGKEkoX3N5c2xpYkdGJTYjSSZhbHBoYUdGJUkmc2luYTJHRiUvLUkkY29zR0YtRi9JJmNvc2EyR0YlSSROdW1HRiUhIiI=QyQ+SSVEZW4xRzYiLUklc3Vic0clKnByb3RlY3RlZEc2JS8tSSRzaW5HNiRGKEkoX3N5c2xpYkdGJTYjSSZhbHBoYUdGJUkmc2luYTJHRiUvLUkkY29zR0YtRi9JJmNvc2EyR0YlSSREZW5HRiUhIiI=QyQ+SSZSZXo1OUc2IiooLUkiKkclKnByb3RlY3RlZEc2JCIiJSwmKiRJIlZHRiUiIiMhIiIiIiJGMUYxSSN4aUdGJUYvLCgqKEYuRjFJJmRlbHRhR0YlRjFGMkYvRjEqJkYuRjFGNUYxRjAhIiNGMUY3RjE=QyQtSSlzaW1wbGlmeUc2JCUqcHJvdGVjdGVkR0koX3N5c2xpYkc2IjYkLCYqJkklTnVtMUdGKCIiIkklRGVuMUdGKCEiIkYtSSZSZXo1OUdGKEYvSSlzeW1ib2xpY0dGKEYtExpansions: sin(aplha) and Z=1/(1+z)QyQ+SSpFeHBfc2luYTJHNiItSSlzaW1wbGlmeUc2JCUqcHJvdGVjdGVkR0koX3N5c2xpYkdGJTYkLUknc2VyaWVzR0YpNiVJJnNpbmEyR0YlL0kjeGlHRiUiIiEiIidJKXN5bWJvbGljR0YlIiIiQyQ+SSZFeHBfWkc2Ii1JKXNpbXBsaWZ5RzYkJSpwcm90ZWN0ZWRHSShfc3lzbGliR0YlNiQtSSdzZXJpZXNHRik2JSomSSZFX3JlekdGJSIiIkkia0dGJSEiIi9JI3hpR0YlIiIhIiIpSSlzeW1ib2xpY0dGJUYxJSFH