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The Enskog equation (II)

The dynamics of the system of particles can be described by the following
exact kinetic equation1:

∂ f
∂t
+ v · ∇r f = JE =

σ2
∫
R3

dv∗

∫
S+

d2k̂
{
f2(r,v′, r + σ k̂,v′∗) − f2(r,v, r − σ k̂,v∗)

}
(vr · k̂).

Let us now make the following simplifying assumption:

- Short-range correlations are taken into account as in Enskog theory:

f2(r,v, r ± d k̂,v∗, t) = χ
[
n
(
r ±

σ

2
k̂
)]

f (r,v, t) f (r ± σ k̂,v∗, t).

where χ is the contact value of the pair correlation function of a hard sphere fluid.

Non-local collision are natural when dealing with non-punctiform particles

1J. Karkheck and G. Stell, “Mean field kinetic theories,” J. Chem. Phys. 75, 1475 (1981)
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The Enskog equation (III)

Different expression of the contact value of the pair correlation function can
be used:

Standard Enskog Theory (SET): value of the pair correlation function in a fluid in
uniform equilibrium with density at the contact point.

χ = χSET

(
n
(
r ±

a
2
k̂
))
=

1
nb

(
pCS

nkBT
− 1

)
=

1
2

2 − η
(1 − η)3 ; b =

2πσ3

3
; η =

πσ3n
6
·

where pCS is given by:

pCS = nkBT
1 + η + η2 − η3

(1 − η)3 (1)
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The Enskog equation (III)

Different expression of the contact value of the pair correlation function can
be used:

Revised Enskog Theory (RET): value of the pair correlation function in a fluid in
non-uniform equilibrium with density at the contact point.

Fischer-Methfessel
approximation

⇝ χ = χRET-FM

[
n
(
r ±

σ

2
k̂
)]
= χSET

n r ± σ k̂

2

 .
where

n (r, t) =
3

4πσ3

∫
S

n(r1, t)w(r, r1) dr1, w(r, r1) =
{

1, ∥r1 − r∥ < σ
0, ∥r1 − r∥ > σ

·
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The Enskog equation (IV)

The right-hand side is given by the Enskog collision operator JE which reads1:

JE = σ
2
∫ {

χ
(
x +

σ

2
k
)

f (x,p∗) f (x + σk,p∗
1)

− χ
(
x −

σ

2
k
)

f (x,p) f (x − σk,p1)
}

(pr · k)dkdp1 (2)

where σ is the molecular diameter. pr = p1 − p is the relative momentum and k is
the unit vector giving the relative position of the two colliding particles. In the
equation above, the distribution function dependence on time t was dropped for
brevity. The superscript ∗ refers to the post-collision momenta.

1G. M. Kremer, An introduction to the Boltzmann equation and transport processes in gases
(Springer-Verlag, Berlin Heidelberg, 2010).
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The simplified Enskog collision operator

By assuming that the factor χ and the distribution functions are smooth functions
one can approximate these functions in the Enskog collision integral through a
Taylor series near the point x. The resulting terms up first order gradient are1:

J0( f , f ) = χ

∫
( f ∗ f ∗1 − f f1)Ω2(pr · k)dkdp1 (3)

J1( f , f ) = χσ

∫
k( f ∗∇ f ∗1 − f∇ f1)Ω2(pr · k)dkdp1

+
σ

2

∫
k∇χ( f ∗ f ∗1 − f f1)Ω2(pr · k)dkdp1 (4)

1G. M. Kremer, An introduction to the Boltzmann equation and transport processes in gases
(Springer-Verlag, Berlin Heidelberg, 2010).
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The simplified Enskog collision operator
The collision term J0( f , f ) is the usual collision term of the Boltzmann equation
multiplied by χ, and is treated as such, by applying the usual relaxation time
approximation. In this paper we will employ the Shakhov collision term1, namely:

J0( f , f ) = −
1
τ

( f − f S ), (5)

where τ is the relaxation time and fS is the equilibrium Maxwell-Boltzmann
distribution times a correction factor1:

f S = fMB

[
1 +

1 − Pr
PikBT

(
ξ2

5mkBT
− 1

)
ξ · q

]
, q =

∫
d3 p f

ξ2

2m
ξ

m
, (6)

where ξ = p − mu is the peculiar momentum, Pr = cPµ/λ is the Prandtl number,
cP = 5kB/2m is the specific heat at constant pressure and Pi = ρRT = nkBT is the
ideal gas equation of state, with R being the specific gas constant. The
Maxwell-Boltzmann distribution fMB is given by:

fMB =
n

(2mπkBT )3/2 exp
(
−

ξ2

2mkBT

)
(7)

1E. Shakhov, “Approximate kinetic equations in rarefied gas theory,” Fluid Dynamics 3, 95 – 96
(1968).
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The simplified Enskog collision operator

The second term of JE , namely J1( f , f ), can be approximated by replacing the
distribution functions ( f ∗, f ∗1 , f , f1) with the corresponding equilibrium distribution
functions. By using f ∗MB f ∗

MB,1 = fMB fMB,1, and integrating over k and p1, one obtains2:

J1( f , f ) ≈ J1( fMB, fMB) =

− bρχ fMB

{
ξ

[
∇ ln(ρ2χT ) +

3
5

(
ζ2 −

5
2

)
∇ ln T

]
+

2
5

[
2ζζ : ∇u +

(
ζ2 −

5
2

)
∇ · u

]}
(8)

where ζ = ξ/
√

2RT .
With the above approximations and considering no external force, the Enskog
equation becomes:

∂ f
∂t
+

p

m
∇x f = −

1
τ

( f − fS ) + J1( fMB, fMB) (9)

2G. M. Kremer, An introduction to the Boltzmann equation and transport processes in gases
(Springer-Verlag, Berlin Heidelberg, 2010).
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The simplified Enskog collision operator

The Chapman-Enskog expansion yields the following conservation equations for
mass, momentum and energy1:

Dρ
Dt
+ ρ∇u = 0 (10a)

ρ
Du

Dt
+ ∇P = −∇ · Π (10b)

ρ
De
Dt
+ P∇ · u = −∇ · q + Π : ∇u (10c)

where D/Dt = ∂t + u · ∇ is the material derivative and P = Pi(1 + bρχ) is the
equation of state of a non-ideal gas. The heat flux and the viscous part of the
stress tensor Παβ are given by:

q = −λ∇T, (11)

Π = −µvI∇ · u − µ
(
∇u + (∇u)T − 2

3I∇ · u
)

(12)

where I is the identity matrix.
1G. M. Kremer, An introduction to the Boltzmann equation and transport processes in gases

(Springer-Verlag, Berlin Heidelberg, 2010).
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The simplified Enskog collision operator

The bulk viscosity µv, shear viscosity µ and the thermal conductivity λ are given
by1:

µv =
16
5π
µ0b2ρ2χ, (13a)

µ = τPi = µ0bρ
(

1
bρχ
+ 0.8 +

4
25

(
1 +

12
π

)
bρχ

)
, (13b)

λ =
5
2
τPi

Pr
= λ0bρ

(
1

bρχ
+ 1.2 +

9
25

(
1 +

32
9π

)
bρχ

)
, (13c)

where µ0 = µref
√

T/T0 is the viscosity coefficient for hard sphere molecules, with
µref representing the viscosity coefficient for dilute gases at temperature T0, and
λ0 ≡ λref is the reference thermal conductivity at temperature T0. The reference
values are:

µref =
5

16σ2

√
mkBT0

π
, λref =

75kB

64mσ2

√
mkBT0

π
. (14)

1G. M. Kremer, An introduction to the Boltzmann equation and transport processes in gases
(Springer-Verlag, Berlin Heidelberg, 2010).
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The simplified Enskog collision operator

From here it follows directly that the relaxation time τ is given by:

τ =
µ

Pi
(15)

Note that the viscosity of the dense gas of a fixed reduced density η can be
changed by varying the molecular diameter σ and the number density n. By using
the reference mean free path l = m/

√
2πσ2nχ, one can define the degree of

denseness El introduced by Frezzotti and Sgarra3, given by the ratio of the
molecular diameter and the mean free path:

El =
σ

l
=

3
√

2
bnχ. (16)

The relaxation time τ can be rewritten as the molecular diameter σ times a
functional g of η:

τ = σg[η] (17)

such that one can vary τ at constant reduced density η by changing σ.
3A. Frezzotti and C. Sgarra, “Numerical analysis of a shock-wave solution of the Enskog equation

obtained via a Monte Carlo method,” J. Stat. Phys. 73, 193–207 (1993).
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Reduced distributions
The y and z degrees of freedom can be integrated out and two reduced
distribution functions, ϕ and θ, can be introduced as4:

ϕ(x, px, t) =
∫

dpydpz f (x,p, t), (18)

θ(x, px, t) =
∫

dpydpz
p2

y + p2
z

m
f (x,p, t) (19)

In the following, all dependencies of the reduced distribution functions will be
dropped for brevity. The macroscopic moments can be evaluated as:

n
ρux

Πxx

 =
∫

dpx


1
px
ξ2

x
m

 ϕ, (20)

 3
2 nkBT

qx

 = ∫
dpx

 1
ξx
m

 ( ξ2
x

2m
ϕ +

1
2
θ

)
(21)

4V. E. Ambrus and V. Sofonea, “Quadrature-based lattice Boltzmann models, for rarefied gas flow,”
in Flowing Matter, (Springer International Publishing, Cham, 2019) pp. 271–299.
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Reduced distributions
The evolution equations for the reduced distribution functions are:

∂

∂t

ϕ
θ

 + px

m
∂

∂x

ϕ
θ

 = −1
τ

ϕ − ϕS

θ − θS

 + Jϕ1
Jθ1

 (22)

In the above the, ϕS and θS are given by:

ϕS = f x
MB

[
1 +

1 − Pr
5PimkBT

(
ξ2

x

mkBT
− 3

)
ξxqx

]
,

θS = 2kBT f x
MB

[
1 +

1 − Pr
5PimkBT

(
ξ2

x

mkBT
− 1

)
ξxqx

]

Jϕ1 = −
[
ξx∂x ln χ + 2ξx∂x ln ρ +

3
5

(
ξ2

x

mkBT
− 1

)
∂xux +

3
10

(
ξ3

x

m2kBT
+
ξx

3m

)
∂x ln T

]
fMB

Jθ1 = −
[
ξx∂x ln χ + 2ξx∂x ln ρ +

3
5

(
ξ2

x

mKBT
−

1
3

)
∂xux

+
3
10

(
ξ3

x

m2kBT
+

7ξx

3m

)
∂x ln T

]
2mkBT fMBbρχ
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Lattice Boltzmann

When the Shakhov collision term is used in an LB model, the moments of the
distribution function ψ(x, p, t) (ψ ∈ {ϕ, θ}) up to order N ≥ 6 are needed in order to
get the evolution equations of the macroscopic fields. The momentum set {pk} has
Q ≥ Qmin elements that belong to the set {rk}, 1 ≤ k ≤ Q, of the roots of the
full-range Hermite polynomial HQ(p) and the their associated weights wk given by

wk =
Q!

[HQ+1(rk)]2 . (23)

The equilibrium functions f k
MB ≡ fMB(x, pk, t) are replaced by:

f k
MB = ngk, (24a)

where

gk ≡ gk [u,T ] = wk

N∑
ℓ=0

Hℓ(pk)
⌊ℓ/2⌋∑
s=0

(mT − 1)s(mu)ℓ−2s

2ss!(ℓ − 2s)!
, (24b)

and ⌊ℓ/2⌋ is the integer part of ℓ/2.
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Lattice Boltzmann

The non-dimensionalized form of the evolution equation of the functions ϕk and θk

is:
∂

∂t

ϕk

θk

 + pk

m
∂

∂x

ϕk

θk

 = −1
τ

ϕk − ϕS ;k

θk − θS ;k

 + Jϕ1;k

Jθ1;k

 . (25)

The macroscopic quantities are evaluated as:
n

ρu

Π

 =
Q∑

k=1


1
pk
ξ2

k
m

 ϕk, (26)

 3
2 nkBT

q

 = Q∑
k=1

dpk

 1
ξk
m

  ξ2
k

2m
ϕk +

1
2
θk

 (27)

The time evolution is performed using the TVD RK-3 scheme and the advection is
performed using 5th order WENO numerical scheme.
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1D problem: Sod shock tube

nL, PL nR, PR

x

At t = 0, the system consists of two semi-infinite domains separated by a thin
membrane at x = 0.

The system is homogeneous along y and z (d = 1).
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1D problem: Sod shock tube - Inviscid limit

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

-0.5 -0.4 -0.3 -0.2 -0.1  0  0.1  0.2  0.3  0.4  0.5

Rarefaction wave

Contact discontinuity

Shock front

n

x

t=0.20

The head of the rarefaction wave propagates at the speed of sound.

The contact discontinuity propagates at the velocity on the plateau.

The speed of the shock front is supersonic.
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1D problem: Sod shock tube - Inviscid limit

Starting from the Euler equations:

Dρ
Dt
+ ρ∇u = 0 (28a)

ρ
Du

Dt
+ ∇P = 0 (28b)

ρ
De
Dt
+ P∇u = 0 (28c)

one can introduce the similarity variable:

ξ =
x − x0

t
. (29)

In this case the Eqs. (28) reduce to:

∂ξu −
ξ − u
ρ

∂ξρ = 0 (30a)

∂ξP − (ξ − u)2∂ξρ = 0 (30b)
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1D problem: Sod shock tube - Inviscid limit
By replacing the above equations in Eq. (28c) and assuming that ∂ξρ , 0, the
equations are satisfied either when u = ξ, corresponding to the contact
discontinuity, or when:

u = ξ ± cs (31)

The (+) solution refers to the rarefaction head, travelling to the left, while the (−)
solution is the rarefaction tail. Since at the head of the rarefaction wave
u = uL = 0, the velocity of the head is constant and is given by:

ξr = −cs (32)

while the tail of the rarefaction wave travels with the constant value on the plateau
u = uc:

ξc = uc − cs (33)

Replacing Eq. (31) in Eqs. (30), one obtains the system of equations for the
rarefaction wave:

1 +
1

2cs

(
∂ρc2

s∂ξρ + ∂Pc2
s∂ξP

)
= −cs∂ξ ln ρ (34a)

∂ξP = c2
s∂ξρ (34b)
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1D problem: Sod shock tube - Inviscid limit

This system of equations can be solved numerically in conjunction with the
Rankine-Hugoniot relations for the discontinuity (i.e. shock front) travelling with
velocity ξs, given by:

ρ2(uc − ξs) = −ξsρR (35a)

ρ2uc(uc − ξs) + Pc = PR (35b)

(ec +
1
2
ρ2u2

c)(uc − ξs) + ucPc = eRξs (35c)

where the following notations have been introduced:

ρ1 = ρ(ξc), ρ2 = ρ(ξs), ec = e(ρc,Tc), eR = e(ρR,TR)
Pc = P(ρ1,T1) = P(ρ2,T2), PR = P(ρR,TR) (36)

where subscript 1 and 2 refer to the left and right side of the contact discontinuity.
The solution is obtained using the high-precision numerical solver included in the
software package Mathematica®5.

5W. R. Inc., “Mathematica, Version 13.1,” Champaign, IL, 2022.
S. Busuioc Enskog FDLB TIM22 - 24th November 2022 21 / 35



Results: Shock wave propagation - Inviscid
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Figure: Density profiles for constant reduced density but with various values of the σ
obtained using the LB model (solid lines) and the particle method PM (points).
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Results: Shock wave propagation - Inviscid
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Figure: Velocity profiles for constant reduced density but with various values of the σ
obtained using the LB model (solid lines) and the particle method PM (points).
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Results: Shock wave propagation - Inviscid
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Figure: Temperature profiles for constant reduced density but with various values of the σ
obtained using the LB model (solid lines) and the particle method PM (points).
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Results: Shock wave propagation
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Figure: Density profiles for constant reduced density but with various values of the σ
obtained using the LB model (solid lines) and the particle method PM (points).
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Results: Shock wave propagation
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Figure: Velocity profiles for constant reduced density but with various values of the σ
obtained using the LB model (solid lines) and the particle method PM (points).
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Results: Shock wave propagation
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Figure: Temperature profiles for constant reduced density but with various values of the σ
obtained using the LB model (solid lines) and the particle method PM (points).
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Results: Shock wave propagation
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Figure: Density profiles for constant reduced density but with various values of the η at
σ = 0.01 obtained using the LB model (solid lines) and the particle method PM (points).
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Results: Shock wave propagation
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Figure: Velocity profiles for constant reduced density but with various values of the η at
σ = 0.01 obtained using the LB model (solid lines) and the particle method PM (points).
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Results: Shock wave propagation
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Figure: Temperature profiles for constant reduced density but with various values of the η at
σ = 0.01 obtained using the LB model (solid lines) and the particle method PM (points).
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Results: Shock wave propagation - structure at initial time
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Figure: Density profiles for σ = 1 at reduced density η = {0.05, 0.25} obtained using the LB
model (solid lines) with Qx = 200 and the PM method (points), at t ∈ {0.2, 0.5}.
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Results: Shock wave propagation
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Figure: Density profiles for σ = 1 at reduced density η = {0.05, 0.25} obtained using the LB
model (solid lines) with Qx = 200 and the PM method (points), at t ∈ {0.2, 0.5}.
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Results: Shock wave propagation
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Figure: Density profiles for σ = 1 at reduced density η = {0.05, 0.25} obtained using the LB
model (solid lines) with Qx = 200 and the PM method (points), at t ∈ {0.2, 0.5}.
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Computational time

Method→ LB PM
σ Qx Nx tLB tPM tPM/tLB

0.001 8 1600 62s 186h ≈ 1.1 × 104

0.01 8 800 32s 23h ≈ 2.5 × 103

0.1 20 640 71s 7.25h ≈ 370
1 200 160 176s 5.8h ≈ 120

Table: Computational time comparison. As expected, the ratio tPM/tLB increases for smaller
relaxation time τ, since at constant reduced density η the relaxation time is proportional to
the molecular diameter σ.
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Conclusions

The simplified Enskog collision integral can be successfully employed when
dealing with moderately dense gases.

The FDLB model successfully reproduces Particle Method results with much
smaller computational time.

Deviations of the FDLB results from the PM counterpart can be observed at
the molecular scale when the denseness factor is larger than 1 (molecular
diameter comparable with the mean free path).
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