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@ The Enskog model
@ The simplified Enskog collision operator
© Numerical results: Longitudinal and shock wave propagation
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The Enskog equation (l)

@ The dynamics of the system of particles can be described by the following
exact kinetic equation:

of 3
E-FV'Vrf—

o2 f v, f d*k {fz(r, V. r+ok, v.) = fo(r,v,r — ok, v*)} w, - k).
R} S,

@ Let us now make the following simplifying assumption:

- Short-range correlations are taken into account as in Enskog theory:

Hrv,r+ dl:t, Vi, 1) = X [n (r + %—I})]f(r, v, Df(r + o-I:t, V., ).

where y is the contact value of the pair correlation function of a hard sphere fluid.
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The Enskog equation (IV)

The right-hand side is given by the Enskog collision operator J which reads’:

se =0 [ (e + k) + akpp)
ag
~ x(x = Zk)ecepx - ko) (b, - odkedpy (1)
where o is the molecular diameter. p, = p, — p is the relative momentum and k is

the unit vector giving the relative position of the two colliding particles.
The contact value of the pair correlation function:

a- 1 (p* 1 2-n 2no3 non
X = Ner ("(H 2)) T b (nkBT ) 20—y 3 1= @
L+ -1

where p& = nkzT

(1-n)?

'G. M. Kremer, An introduction to the Boltzmann equation and transport processes in gases
(Springer-Verlag, Berlin Heidelberg, 2010).
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The simplified Enskog collision operator

By assuming that the factor y and the distribution functions are smooth functions
one can approximate these functions in the Enskog collision integral through a
Taylor series near the point x. The resulting terms up first order gradient are':

Jo(f.f) Xf(f*ff - fQp, - k)dkdp, @)

L = xo f K(FVf? - FV)Qp, - k)dkdp,

+

z f KV — )9, - k)dkdp, (4)

The collision term Jy(f,f) is the usual collision term of the Boltzmann equation for
which we will employ the Shakhov collision term.

'G. M. Kremer, An introduction to the Boltzmann equation and transport processes in gases
(Springer-Verlag, Berlin Heidelberg, 2010).
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The simplified Enskog collision operator

The second term of J¢, namely Ji(f,f), can be approximated by replacing the
distribution functions (f*, f;".f.f1) with the corresponding equilibrium distribution
functions. By using fyfy. | = fuefus,1, @nd integrating over k and py, one obtains’:

J1(E. ) = Ji(fues fue) =
— bpoxfus {§ [V In(p*xT) + = (g“ - —) VIn T]

+§ 2¢¢: Vu+ (52 - g)Vu]} (5)
where ¢ = £/ V2RT.

With the above approximations and considering no external force, the Enskog
equation becomes:

g_ft _fo = _—(f fs) + J1(fues fue) (6)

'G. M. Kremer, An introduction to the Boltzmann equation and transport processes in gases
(Springer-Verlag, Berlin Heidelberg, 2010).
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The simplified Enskog collision operator

Multiplying the Enskog equation with the collision invariants 1, p and p?/2m and

integrating over the momentum space yields the following conservation equations
for mass, momentum and energy’:

Dp
— +pVu =0 7a
D TPVE (7a)
Du
— +VP=-V.II 7b
P oy (7b)
D
p—e+PV~u=—V-q+H:Vu (7c)
Dt
where D/Dt = 0; + u - V is the material derivative and P = P;(1 + bpy) is the
equation of state of a non-ideal gas. The heat flux and the viscous part of the
stress tensor I,z are given by:
q = _/IVT’ (8)

M= -, IV -u—p(Vu+ (Vu) - 21V -u)

'G. M. Kremer, An introduction to the Boltzmann equation and transport processes in gases
(Springer-Verlag, Berlin Heidelberg, 2010).
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The simplified Enskog collision operator

The bulk viscosity u,, shear viscosity 4 and the thermal conductivity A are given
by':

16

Hy = 5 Hob’P%X, (10a)

1 4 12
u=1P; = pobp| — + 0.8 + — 1+—bp)( (10b)

bpy 25
51P; 1 9 32
== — + 124+ =1+ = 1

A SPr obp(pr+ +25( +9 )bp)() (10c)

where po = et VT /Ty is the viscosity coefficient for hard sphere molecules, with
Uref representing the viscosity coefficient for dilute gases at temperature Ty, and
Ao = At is the reference thermal conductivity at temperature T,. The reference

values are:
5 mkgT T5kg kaTo
"2\ . 4 11
Hrel = 1602 n = 6dmo? an

'G. M. Kremer, An introduction to the Boltzmann equation and transport processes in gases
(Springer-Verlag, Berlin Heidelberg, 2010).
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The simplified Enskog collision operator

For the dense gas the Prandtl number is:
2 L+ boy + 55 (1 + ) (oo
31+ Shoy + 5 (1 + %)(l)p/\()2

The Chapman-Enskog expansion of Eq. (6) gives the relations between the
relaxation time 7 and the transport coefficients. It follows that the relaxation time =
is given by:

Pr

(12)

M
T= P (13)
Note that the viscosity of the dense gas of a fixed reduced density i can be
changed by varying the molecular diameter o and the number density n.
By using the reference mean free path I = m/ V2no?ny, one can define the
degree of denseness E; introduced by Frezzotti and Sgarra?, given by the ratio of
the molecular diameter and the mean free path:
o 3
E = 7= \/Ebn)(. (14)

2A. Frezzotti and C. Sgarra, “Numerical analysis of a shock-wave solution of the Enskog equation
obtained via a Monte Carlo method,” J. Stat. Phys. 73, 193-207 (1993).
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Reduced distributions

The y and z degrees of freedom can be integrated out and two reduced
distribution functions, ¢ and 6, can be introduced as®:

o, prt) = f dpydp.f(x.p. 1), (15)
Py + 2
0, pos 1) = f dpyip. " fx 1) (16)

In the following, all dependencies of the reduced distribution functions will be
dropped for brevity. The macroscopic moments can be evaluated as:

n 1
puy | = f dpy | px | &, (17)
I, =

(;r] f dpx(&](fx o 9) (19

3V. E. Ambrus and V. Sofonea, “Quadrature-based lattice Boltzmann models, for rarefied gas flow,”
in Flowing Matter, (Springer International Publishing, Cham, 2019) pp. 271-299.
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Reduced distributions

The evolution equations for the reduced distribution functions are:

d(¢] . px0 (2] _ - ¢s
E(H]Jrﬁa_x[e]_ [9 es) (ﬁ] (19)

In the above the, ¢5 and 65 are given by:

bs =fr\)/|CB 1+

1-Pr ( &
=D .1 T -3 xY4x |
—Pr [ &
=D .71 T -1 fxCIx
5P kaT kaT

Oy In +261n+ & 1o > & +éalanb
T |Gty k280 o+ Sl T 0t 6\ kT T 3 ) x0T [febex

05 = 2kpTFS |1 +

0y Iny + 2£,0,1 +3 & 1(‘)14
— [6x0x 1IN xOx 1N = Y xUx
S0 Iny P S\mksT ™ 3

3( & Téx
In T 2mky Ty
10(m2kBT 3m)6 " } ks Tfuebrox
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Finite difference Lattice Boltzmann

In the following, we will introduce the notation v € {¢, 6} to represent the reduced
distributions introduced earlier.

In order to evaluate the macroscopic quantities one will replace the integrals with
quadrature sums. The distribution function ¢ is projected on a set of Hermite
polynomials up to order N*:

N
1
W 1) = M p.t) = w(pn) ) race DHepo) (20)
=0 "’
where the coefficients a,(x, r) are given by:

arx, ) = f dpy(x. p. DH(p) (1)

4X. Shan, X.-F. Yuan, and H. Chen, “Kinetic theory representation of hydrodynamics: a way beyond
the navier—stokes equation,” Journal of Fluid Mechanics 550, 413—441.(2006)
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Finite difference Lattice Boltzmann

The momentum set {p;} has Q > Omin €lements that belong to the set {r},
1 <k < Q, of the roots of the full-range Hermite polynomial Hy(p) and the their
associated weights wy given by

0!

W = —————. 22
, [Hos1(ro]? (22)

The equilibrium functions £, = f,s(x, pi. £) are replaced by:
fia = 18k (23a)

where )
N
_ B (mT — 1)*(mu)c%

gk = g 1. T1 = wy ;Hf@k) D T (230)

and [£/2] is the integer part of £/2.
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Lattice Boltzmann

The non-dimensionalized form of the evolution equation of the functions ¢, and 6,

IS:
1 (¢n — ¢s. J?
0 [ +&£ G| _ 1P~ Isuk ] (24)
ot \ 6, m 0x \ 6 T\ 6 — s Jf;k
The macroscopic quantities are evaluated as:
pu| =D |pe| e (25)
I k=1 %
3 9] 2
3nksT 1)( & 1
= > d — =0 26
[ g J kZ:; Dk %][2m¢k+2k (26)

The time evolution is performed using the TVD RK-3 scheme and the advection is
performed using 5" order WENO numerical scheme.
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Longitudinal waves

The propagation of longitudinal waves induces fluctuations in the macroscopic
properties of the fluid, the amplitudes of which decay due to viscous and thermal
dissipation. For simplicity we will consider small perturbations of density and
pressure around the constant values py and Py in a fluid homogeneous along the
y and z axis, which propagates along the x axis with a small velocity u(x, t):

px, 1) =poll +0p(x,1)], P(x,t) = Po[l + 6P(x,1)] (27)

where the perturbations §p and 6P are of the same order of magnitude as u.
In the liniarised regime the macroscopic equations reduce to:

0:0p+ 0 =0 (28a)
P 1
O+ —8,6P— —8,J1=0 (28D)
Lo PO
" P
T+ 24 P05, ¢ (28¢)

pocvTo — pocvTo

where the specific energy is e = ¢y T = cyTo(1 + 6T) and I1 = O(u).

S. Busuioc Enskog FDLB NEGF23 - 30 March 2022 15/36



Results: Longitudinal waves

The sound speed is given by:

Py
c = 0,P + ——0rP (29)
p()CV
The damping coefficients:
yuk*
a; = WﬁpP, g = sz
KP4 oy 7
a — + ==(1-0,P 30
%= 200 [3 ’ H " Pr ( ) (30)

We will restrict our simulations to the case when the pressure perturbation
vanishes at initial time 6P(zy) = 0. After some calculation one can write the full
solution of the density amplitude can be written as:

(31)

op(t) = opg | e [ —od g (e_"“’ cos(kcgt) — e™™ ) ap}

2 9p
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Results: Longitudinal waves

1.2

Analytic LB - n=0000052 o
S 0418879 o
N I
0.8 Z
0.6 |
g
w
<
1B
0.4 14
oo | AT
0 i
—0.2 L L L
0 0.5 2 25 3

Figure: Normalized density amplitude 5p(t)/dp, in comparison with the analytical prediction.
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Results: Longitudinal waves
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Figure: The sound speed ¢, obtained from the simulation results and the analytic prediction.
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Results: Longitudinal waves
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Figure: The acoustic a, and thermal a, mode with respect to the reduced density 7.
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1D problem: Sod shock tube

ni
?9PR

@ At =0, the system consists of two semi-infinite domains separated by a thin
membrane at x = 0.

@ The system is homogeneous along y and z (d = 1).
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1D problem: Sod shock tube - Inviscid limit

1.1

1

0.9

0.8

0.7

c 06
0.5

04

03 | __—

0.2 Contact discontinuity

t=0.20 ——

Rarefaction wave
Shock front
0.1 : : : : : : : ‘ ‘

-05 -04 -03 -02 -01 0 01 02 03 04 05
X

@ The head of the rarefaction wave propagates at the speed of sound.
@ The contact discontinuity propagates at the velocity on the plateau.
@ The speed of the shock front is supersonic.
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1D problem: Sod shock tube - Inviscid limit

Starting from the Euler equations:

Dp
E +qu =0 (323)
D
pFl: +VP=0 (32b)
D
pﬁj +PVu =0 (32c)

one can introduce the similarity variable:

&= : (33)

After some calculations, one can write the system of equations for the rarefaction
wave:

1
I+ o (05c20:p + Op20:P) = —c,0¢ Inp (34a)
0P = ci0gp (34b)
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1D problem: Sod shock tube - Inviscid limit

This system of equations can be solved numerically in conjunction with the
Rankine-Hugoniot relations for the discontinuity (i.e. shock front) travelling with
velocity &, given by:

pZ(uc - é:s) = —fsPR (353)
pZMC(Mc - fs) +P.=Pp (35b)
(ec + %pzuf)(uc — &)+ ucP. = egés (35¢)

where the following notations have been introduced:

pl = p(§C)’ p2 = p(fS)’ eC = e(pc’ TL‘), eR = e(pR9 TR)
P. = P(p1,T1) = P(p2,T2), Pr = P(pr, Tr) (36)
where subscript 1 and 2 refer to the left and right side of the contact discontinuity.

The solution is obtained using the high-precision numerical solver included in the
software package Mathematica®?®.

SW. R. Inc., “Mathematica, Version 13.1,” Champaign, IL, 2022.

S. Busuioc Enskog FDLB NEGF23 - 30 March 2022 23/36



Results: Shock wave propagation - Inviscid

T T
Inviscid = = =

09 L LB-0=10"" i

0.6 - ]

/70

0.5 ]

0.4 + R

0.2 ‘—1 ]

0.1 L L L L I
-20 -10 0 10 20

T

Figure: Shock wave propagation: reduced density for molecular diameter o = 107° at
reduced density n; = 0.05 (E; = 0.4825) obtained using the LB model (solid line) and
compared with the inviscid solution (dashed line).
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Results: Shock wave propagation - Inviscid
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Figure: Shock wave propagation: velocity for molecular diameter - = 107% at reduced
density n; = 0.05 (E; = 0.4825) obtained using the LB model (solid line) and compared with
the inviscid solution (dashed line).
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Results: Shock wave propagation - Inviscid
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Figure: Shock wave propagation: reduced density for molecular diameter o = 107° at
reduced density n; = 0.05 (E;, = 0.4825) obtained using the LB model (solid line) and
compared with the inviscid solution (dashed line).
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Results: Shock wave propagation
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Figure: Shock wave propagation: reduced density profile for ; = 0.05 (E; = 0.4825) but with
various values of the molecular diameter (implicitly various values of the relaxation time 7).
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Results: Shock wave propagation
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Figure: Shock wave propagation: velocity profile for n; = 0.05 (E; = 0.4825) but with various
values of the molecular diameter (implicitly various values of the relaxation time 7).
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Results: Shock wave propagation
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Figure: Shock wave propagation: temperature profile for ; = 0.05 (E; = 0.4825) but with
various values of the molecular diameter (implicitly various values ofthe relaxation time 7).
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Results: Shock wave propagation
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Figure: Density profiles for constant reduced density but with various values of the n at
o =0.01 and n € {0.05, 0.15, 0.25} (E; € {0.4825, 1.917, 4.3998}).
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Results: Shock wave propagation
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Figure: Velocity profiles for constant reduced density but with various values of the n at
o =0.01 and 5 € {0.05, 0.15, 0.25} (E; € {0.4825, 1.917, 4.3998}).
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Results: Shock wave propagation
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Figure: Temperature profiles for constant reduced density but with various values of the n at
o =0.01 and 5 € {0.05, 0.15, 0.25} (E; € {0.4825, 1.917, 4.3998}).
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Results: Shock wave propagation - structure at initial time

Figure: Shock wave propagation: structure at the initial time. Density profile for molecular
diameter o = 1 at reduced density 7; = {0.05,0.25} (E; € {0.4825,4.3998}).
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Results: Shock wave propagation
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Figure: Shock wave propagation: structure at the initial time. Velocity profile for molecular
diameter o = 1 at reduced density 7; = {0.05,0.25} (E; € {0.4825,4.3998}).
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Results: Shock wave propagation
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Figure: Shock wave propagation: structure at the initial time. Temperature profile for
molecular diameter o~ = 1 at reduced density n; = {0.05, 0.25} (E; € {0.4825,4.3998}).

S. Busuioc Enskog FDLB NEGF23 - 30 March 2022 35/36



Conclusion

@ The simplified Enskog collision integral can be successfully employed when
dealing with moderately dense gases.

@ The FDLB model successfully reproduces Particle Method results with much
smaller computational time.

@ Deviations of the FDLB results from the PM counterpart can be observed at
the molecular scale when the denseness factor is larger than 1 (molecular
diameter comparable with the mean free path).

@ This work was supported through a grant of the Ministry of Research,
Innovation and Digitization, CNCS - UEFISCDI, project number
PN-IlI-P1-1.1-PD-2021-0216, within PNCDI III.

Busuioc, S., Quadrature-based lattice Boltzmann model for non-equilibrium dense gas flows,
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