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The Enskog equation (I)

The dynamics of the system of particles can be described by the following
exact kinetic equation:

∂f
∂t
+ v · ∇rf =

σ2
∫
R3

dv∗
∫
S+

d2k̂
{
f2(r, v′, r + σ k̂, v′∗) − f2(r, v, r − σ k̂, v∗)

}
(vr · k̂).

Let us now make the following simplifying assumption:

- Short-range correlations are taken into account as in Enskog theory:

f2(r, v, r ± d k̂, v∗, t) = χ
[
n
(
r ±

σ

2
k̂
)]

f (r, v, t)f (r ± σ k̂, v∗, t).

where χ is the contact value of the pair correlation function of a hard sphere fluid.
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The Enskog equation (IV)

The right-hand side is given by the Enskog collision operator JE which reads1:

JE = σ
2
∫ {

χ
(
x +

σ

2
k
)

f (x, p∗)f (x + σk, p∗1 )

− χ
(
x −

σ

2
k
)

f (x, p)f (x − σk, p1)
}

(pr · k)dkdp1 (1)

where σ is the molecular diameter. pr = p1 − p is the relative momentum and k is
the unit vector giving the relative position of the two colliding particles.
The contact value of the pair correlation function:

χ = χSET

(
n
(
r ±

a
2

k̂
))
=

1
nb

(
pCS

nkBT
− 1

)
=

1
2

2 − η
(1 − η)3 ; b =

2πσ3

3
; η =

πσ3n
6
· (2)

where pCS = nkBT 1+η+η2−η3

(1−η)3 .

1G. M. Kremer, An introduction to the Boltzmann equation and transport processes in gases
(Springer-Verlag, Berlin Heidelberg, 2010).
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The simplified Enskog collision operator

By assuming that the factor χ and the distribution functions are smooth functions
one can approximate these functions in the Enskog collision integral through a
Taylor series near the point x. The resulting terms up first order gradient are1:

J0(f , f ) = χ

∫
(f ∗f ∗1 − ff1)Ω2(pr · k)dkdp1 (3)

J1(f , f ) = χσ

∫
k(f ∗∇f ∗1 − f∇f1)Ω2(pr · k)dkdp1

+
σ

2

∫
k∇χ(f ∗f ∗1 − ff1)Ω2(pr · k)dkdp1 (4)

The collision term J0(f , f ) is the usual collision term of the Boltzmann equation for
which we will employ the Shakhov collision term.

1G. M. Kremer, An introduction to the Boltzmann equation and transport processes in gases
(Springer-Verlag, Berlin Heidelberg, 2010).
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The simplified Enskog collision operator

The second term of JE, namely J1(f , f ), can be approximated by replacing the
distribution functions (f ∗, f ∗1 , f , f1) with the corresponding equilibrium distribution
functions. By using f ∗MBf ∗

MB,1 = fMBfMB,1, and integrating over k and p1, one obtains1:

J1(f , f ) ≈ J1(fMB, fMB) =

− bρχfMB

{
ξ

[
∇ ln(ρ2χT) +

3
5

(
ζ2 −

5
2

)
∇ ln T

]
+

2
5

[
2ζζ : ∇u +

(
ζ2 −

5
2

)
∇ · u

]}
(5)

where ζ = ξ/
√

2RT.
With the above approximations and considering no external force, the Enskog
equation becomes:

∂f
∂t
+

p
m
∇xf = −

1
τ

(f − fS) + J1(fMB, fMB) (6)

1G. M. Kremer, An introduction to the Boltzmann equation and transport processes in gases
(Springer-Verlag, Berlin Heidelberg, 2010).
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The simplified Enskog collision operator
Multiplying the Enskog equation with the collision invariants 1, p and p2/2m and
integrating over the momentum space yields the following conservation equations
for mass, momentum and energy1:

Dρ
Dt
+ ρ∇u = 0 (7a)

ρ
Du
Dt
+ ∇P = −∇ · Π (7b)

ρ
De
Dt
+ P∇ · u = −∇ · q + Π : ∇u (7c)

where D/Dt = ∂t + u · ∇ is the material derivative and P = Pi(1 + bρχ) is the
equation of state of a non-ideal gas. The heat flux and the viscous part of the
stress tensor Παβ are given by:

q = −λ∇T , (8)

Π = −µvI∇ · u − µ
(
∇u + (∇u)T − 2

3I∇ · u
)

(9)

where I is the identity matrix.
1G. M. Kremer, An introduction to the Boltzmann equation and transport processes in gases

(Springer-Verlag, Berlin Heidelberg, 2010).
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The simplified Enskog collision operator

The bulk viscosity µv, shear viscosity µ and the thermal conductivity λ are given
by1:

µv =
16
5π
µ0b2ρ2χ, (10a)

µ = τPi = µ0bρ
(

1
bρχ
+ 0.8 +

4
25

(
1 +

12
π

)
bρχ

)
, (10b)

λ =
5
2
τPi

Pr
= λ0bρ

(
1

bρχ
+ 1.2 +

9
25

(
1 +

32
9π

)
bρχ

)
, (10c)

where µ0 = µref
√

T/T0 is the viscosity coefficient for hard sphere molecules, with
µref representing the viscosity coefficient for dilute gases at temperature T0, and
λ0 ≡ λref is the reference thermal conductivity at temperature T0. The reference
values are:

µref =
5

16σ2

√
mkBT0

π
, λref =

75kB

64mσ2

√
mkBT0

π
. (11)

1G. M. Kremer, An introduction to the Boltzmann equation and transport processes in gases
(Springer-Verlag, Berlin Heidelberg, 2010).
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The simplified Enskog collision operator
For the dense gas the Prandtl number is:

Pr =
2
3

1 + 4
5 bρχ + 4

25

(
1 + 12

π

)
(bρχ)2

1 + 6
5 bρχ + 9

25

(
1 + 32

9π

)
(bρχ)2

. (12)

The Chapman-Enskog expansion of Eq. (6) gives the relations between the
relaxation time τ and the transport coefficients. It follows that the relaxation time τ
is given by:

τ =
µ

Pi
(13)

Note that the viscosity of the dense gas of a fixed reduced density η can be
changed by varying the molecular diameter σ and the number density n.
By using the reference mean free path l = m/

√
2πσ2nχ, one can define the

degree of denseness El introduced by Frezzotti and Sgarra2, given by the ratio of
the molecular diameter and the mean free path:

El =
σ

l
=

3
√

2
bnχ. (14)

2A. Frezzotti and C. Sgarra, “Numerical analysis of a shock-wave solution of the Enskog equation
obtained via a Monte Carlo method,” J. Stat. Phys. 73, 193–207 (1993).
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Reduced distributions
The y and z degrees of freedom can be integrated out and two reduced
distribution functions, ϕ and θ, can be introduced as3:

ϕ(x, px, t) =
∫

dpydpzf (x, p, t), (15)

θ(x, px, t) =
∫

dpydpz
p2

y + p2
z

m
f (x, p, t) (16)

In the following, all dependencies of the reduced distribution functions will be
dropped for brevity. The macroscopic moments can be evaluated as:

n
ρux

Πxx

 =
∫

dpx


1
px
ξ2

x
m

 ϕ, (17)

 3
2 nkBT

qx

 = ∫
dpx

 1
ξx
m

 ( ξ2
x

2m
ϕ +

1
2
θ

)
(18)

3V. E. Ambrus and V. Sofonea, “Quadrature-based lattice Boltzmann models, for rarefied gas flow,”
in Flowing Matter, (Springer International Publishing, Cham, 2019) pp. 271–299.
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Reduced distributions
The evolution equations for the reduced distribution functions are:

∂

∂t

ϕ
θ

 + px

m
∂

∂x

ϕ
θ

 = −1
τ

ϕ − ϕS

θ − θS

 + Jϕ1Jθ1

 (19)

In the above the, ϕS and θS are given by:

ϕS = f x
MB

[
1 +

1 − Pr
5PimkBT

(
ξ2

x

mkBT
− 3

)
ξxqx

]
,

θS = 2kBTf x
MB

[
1 +

1 − Pr
5PimkBT

(
ξ2

x

mkBT
− 1

)
ξxqx

]

Jϕ1 = −
[
ξx∂x ln χ + 2ξx∂x ln ρ +

3
5

(
ξ2

x

mkBT
− 1

)
∂xux +

3
10

(
ξ3

x

m2kBT
+
ξx

3m

)
∂x ln T

]
fMBbρχ

Jθ1 = −
[
ξx∂x ln χ + 2ξx∂x ln ρ +

3
5

(
ξ2

x

mKBT
−

1
3

)
∂xux

+
3
10

(
ξ3

x

m2kBT
+

7ξx

3m

)
∂x ln T

]
2mkBTfMBbρχ
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Finite difference Lattice Boltzmann

In the following, we will introduce the notation ψ ∈ {ϕ, θ} to represent the reduced
distributions introduced earlier.
In order to evaluate the macroscopic quantities one will replace the integrals with
quadrature sums. The distribution function ψ is projected on a set of Hermite
polynomials up to order N4:

ψ(x, p, t) ≡ ψN(x, p, t) = ω(pk)
N∑
ℓ=0

1
ℓ!

aℓ(x, t)Hℓ(pk) (20)

where the coefficients aℓ(x, t) are given by:

aℓ(x, t) =
∫

dpψ(x, p, t)Hℓ(p) (21)

4X. Shan, X.-F. Yuan, and H. Chen, “Kinetic theory representation of hydrodynamics: a way beyond
the navier–stokes equation,” Journal of Fluid Mechanics 550, 413–441 (2006)
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Finite difference Lattice Boltzmann

The momentum set {pk} has Q ≥ Qmin elements that belong to the set {rk},
1 ≤ k ≤ Q, of the roots of the full-range Hermite polynomial HQ(p) and the their
associated weights wk given by

wk =
Q!

[HQ+1(rk)]2 . (22)

The equilibrium functions f k
MB ≡ fMB(x, pk, t) are replaced by:

f k
MB = ngk, (23a)

where

gk ≡ gk [u,T] = wk

N∑
ℓ=0

Hℓ(pk)
⌊ℓ/2⌋∑
s=0

(mT − 1)s(mu)ℓ−2s

2ss!(ℓ − 2s)!
, (23b)

and ⌊ℓ/2⌋ is the integer part of ℓ/2.
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Lattice Boltzmann

The non-dimensionalized form of the evolution equation of the functions ϕk and θk

is:
∂

∂t

ϕk

θk

 + pk

m
∂

∂x

ϕk

θk

 = −1
τ

ϕk − ϕS;k

θk − θS;k

 + Jϕ1;k

Jθ1;k

 . (24)

The macroscopic quantities are evaluated as:
n

ρu

Π

 =
Q∑

k=1


1
pk
ξ2

k
m

 ϕk, (25)

 3
2 nkBT

q

 = Q∑
k=1

dpk

 1
ξk
m

  ξ2
k

2m
ϕk +

1
2
θk

 (26)

The time evolution is performed using the TVD RK-3 scheme and the advection is
performed using 5th order WENO numerical scheme.
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Longitudinal waves

The propagation of longitudinal waves induces fluctuations in the macroscopic
properties of the fluid, the amplitudes of which decay due to viscous and thermal
dissipation. For simplicity we will consider small perturbations of density and
pressure around the constant values ρ0 and P0 in a fluid homogeneous along the
y and z axis, which propagates along the x axis with a small velocity u(x, t):

ρ(x, t) = ρ0[1 + δρ(x, t)], P(x, t) = P0[1 + δP(x, t)] (27)

where the perturbations δρ and δP are of the same order of magnitude as u.
In the liniarised regime the macroscopic equations reduce to:

∂tδρ + ∂xu = 0 (28a)

∂tu +
P0

ρ0
∂xδP −

1
ρ0
∂xΠ = 0 (28b)

∂tδT +
∂xq

ρ0cVT0
+

P0

ρ0cVT0
∂xu = 0 (28c)

where the specific energy is e = cVT = cVT0(1 + δT) and Π = O(u).
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Results: Longitudinal waves
The sound speed is given by:

c2
s = ∂ρP +

P0

ρ2
0cV

∂TP (29)

The damping coefficients:

αt =
γµk2

Prρ0c2
s
∂ρP, αs = kcs

αa =
k2µ

2ρ0

[
4
3
+
µV

µ
+
γc2

s

Pr

(
1 − ∂ρP

)]
(30)

We will restrict our simulations to the case when the pressure perturbation
vanishes at initial time δP(t0) = 0. After some calculation one can write the full
solution of the density amplitude can be written as:

δρ(t) ≈ δρ0

[
e−αt t +

(
e−αat cos(kcst) − e−αt t

) 1
c2

s

∂P
∂ρ

]
(31)
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Results: Longitudinal waves

−0.2
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Figure: Normalized density amplitude δρ(t)/δρ0 in comparison with the analytical prediction.
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Results: Longitudinal waves

100
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10−4 10−3 10−2 10−1
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Dilute gas - cs
Analytic - cs

LB cs

Figure: The sound speed cs obtained from the simulation results and the analytic prediction.
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Results: Longitudinal waves
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Figure: The acoustic αa and thermal αt mode with respect to the reduced density η.
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1D problem: Sod shock tube

ηi,PL
ηi
8 ,PR

x

At t = 0, the system consists of two semi-infinite domains separated by a thin
membrane at x = 0.

The system is homogeneous along y and z (d = 1).
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1D problem: Sod shock tube - Inviscid limit
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The head of the rarefaction wave propagates at the speed of sound.

The contact discontinuity propagates at the velocity on the plateau.

The speed of the shock front is supersonic.
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1D problem: Sod shock tube - Inviscid limit
Starting from the Euler equations:

Dρ
Dt
+ ρ∇u = 0 (32a)

ρ
Du
Dt
+ ∇P = 0 (32b)

ρ
De
Dt
+ P∇u = 0 (32c)

one can introduce the similarity variable:

ξ =
x − x0

t
. (33)

After some calculations, one can write the system of equations for the rarefaction
wave:

1 +
1

2cs

(
∂ρc2

s∂ξρ + ∂Pc2
s∂ξP

)
= −cs∂ξ ln ρ (34a)

∂ξP = c2
s∂ξρ (34b)
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1D problem: Sod shock tube - Inviscid limit

This system of equations can be solved numerically in conjunction with the
Rankine-Hugoniot relations for the discontinuity (i.e. shock front) travelling with
velocity ξs, given by:

ρ2(uc − ξs) = −ξsρR (35a)

ρ2uc(uc − ξs) + Pc = PR (35b)

(ec +
1
2
ρ2u2

c)(uc − ξs) + ucPc = eRξs (35c)

where the following notations have been introduced:

ρ1 = ρ(ξc), ρ2 = ρ(ξs), ec = e(ρc,Tc), eR = e(ρR,TR)
Pc = P(ρ1,T1) = P(ρ2,T2), PR = P(ρR,TR) (36)

where subscript 1 and 2 refer to the left and right side of the contact discontinuity.
The solution is obtained using the high-precision numerical solver included in the
software package Mathematica®5.

5W. R. Inc., “Mathematica, Version 13.1,” Champaign, IL, 2022.
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Results: Shock wave propagation - Inviscid
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Figure: Shock wave propagation: reduced density for molecular diameter σ = 10−6 at
reduced density ηi = 0.05 (El = 0.4825) obtained using the LB model (solid line) and
compared with the inviscid solution (dashed line).
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Results: Shock wave propagation - Inviscid
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Figure: Shock wave propagation: velocity for molecular diameter σ = 10−6 at reduced
density ηi = 0.05 (El = 0.4825) obtained using the LB model (solid line) and compared with
the inviscid solution (dashed line).
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Results: Shock wave propagation - Inviscid
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Figure: Shock wave propagation: reduced density for molecular diameter σ = 10−6 at
reduced density ηi = 0.05 (El = 0.4825) obtained using the LB model (solid line) and
compared with the inviscid solution (dashed line).

S. Busuioc Enskog FDLB NEGF23 - 30 March 2022 26 / 36



Results: Shock wave propagation
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Figure: Shock wave propagation: reduced density profile for ηi = 0.05 (El = 0.4825) but with
various values of the molecular diameter (implicitly various values of the relaxation time τ).
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Results: Shock wave propagation
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Figure: Shock wave propagation: velocity profile for ηi = 0.05 (El = 0.4825) but with various
values of the molecular diameter (implicitly various values of the relaxation time τ).

S. Busuioc Enskog FDLB NEGF23 - 30 March 2022 28 / 36



Results: Shock wave propagation
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Figure: Shock wave propagation: temperature profile for ηi = 0.05 (El = 0.4825) but with
various values of the molecular diameter (implicitly various values of the relaxation time τ).
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Results: Shock wave propagation
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Figure: Density profiles for constant reduced density but with various values of the η at
σ = 0.01 and η ∈ {0.05, 0.15, 0.25} (El ∈ {0.4825, 1.917, 4.3998}).
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Results: Shock wave propagation
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Figure: Velocity profiles for constant reduced density but with various values of the η at
σ = 0.01 and η ∈ {0.05, 0.15, 0.25} (El ∈ {0.4825, 1.917, 4.3998}).
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Results: Shock wave propagation
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Figure: Temperature profiles for constant reduced density but with various values of the η at
σ = 0.01 and η ∈ {0.05, 0.15, 0.25} (El ∈ {0.4825, 1.917, 4.3998}).
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Results: Shock wave propagation - structure at initial time
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Figure: Shock wave propagation: structure at the initial time. Density profile for molecular
diameter σ = 1 at reduced density ηi = {0.05, 0.25} (El ∈ {0.4825, 4.3998}).
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Results: Shock wave propagation
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Figure: Shock wave propagation: structure at the initial time. Velocity profile for molecular
diameter σ = 1 at reduced density ηi = {0.05, 0.25} (El ∈ {0.4825, 4.3998}).
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Results: Shock wave propagation
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Figure: Shock wave propagation: structure at the initial time. Temperature profile for
molecular diameter σ = 1 at reduced density ηi = {0.05, 0.25} (El ∈ {0.4825, 4.3998}).
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Conclusion

The simplified Enskog collision integral can be successfully employed when
dealing with moderately dense gases.

The FDLB model successfully reproduces Particle Method results with much
smaller computational time.

Deviations of the FDLB results from the PM counterpart can be observed at
the molecular scale when the denseness factor is larger than 1 (molecular
diameter comparable with the mean free path).
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