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The Enskog equation

@ The dynamics of the system of particles can be described by the following
exact kinetic equation:

of 3
E-FV'Vrf—

o2 f v, f d*k {fz(r, V. r+ok, v.) = fo(r,v,r — ok, v*)} w, - k).
R} S,

@ Let us now make the following simplifying assumption:
- Short-range correlations are taken into account as in Enskog theory:

Hrv,r+ dl:t, Vi, 1) = X [n (r + %—I})]f(r, v, Df(r + o-I:t, V., ).

where y is the contact value of the pair correlation function of a hard sphere fluid.
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The Enskog equation

The right-hand side is given by the Enskog collision operator J which reads’:

se =0 [ (e + k) + akpp)
ag
~ x(x = Zk)ecepx - ko) (b, - odkedpy (1)
where o is the molecular diameter. p, = p, — p is the relative momentum and k is

the unit vector giving the relative position of the two colliding particles.
The contact value of the pair correlation function:

a- 1 (p* 1 2-n 2no3 non
X = Ner ("(H 2)) T b (nkBT ) 20—y 3 1= @
L+ -1

where p& = nkzT T

'G. M. Kremer, An introduction to the Boltzmann equation and transport processes in gases
(Springer-Verlag, Berlin Heidelberg, 2010).
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The Enskog equation

@ Revised Enskog Theory (RET): value of the pair correlation function in a fluid
in non-uniform equilibrium with density at the contact point.

Fischer- o i
Methfessel M X = Xrereu [n( Ek)] = Xeer (n (r + 0'2))
approximation

where

_ 3 RS Iy —rll < o

n(r,t)—4ﬂ_0_3Ln(r],t)W(r,rl)dr], W(r9rl)_{ 0’ ||r]_r||>0_ :
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The simplified Enskog collision operator

By assuming that the factor y and the distribution functions are smooth functions
one can approximate these functions in the Enskog collision integral through a
Taylor series near the point x. The resulting terms up first order gradient are':

JO(f’f)

P f Ffr — )@, - K)dkdp, @3)
-]l (f’f)

Xo f k(" VS - fVOQ P, - k)dkdp,

+

z f KV (Ffr - )@, - kdkdp, (4)

The collision term Jy(f,f) is the usual collision term of the Boltzmann equation.

'G. M. Kremer, An introduction to the Boltzmann equation and transport processes in gases
(Springer-Verlag, Berlin Heidelberg, 2010).
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The simplified Enskog collision operator

The collision term Jy(f,f) is treated applying the usual relaxation time
approximation. In this paper we will employ the Shakhov collision term', namely:

Iof.f) = = 1), ®

where 7 is the relaxation time and f; is the equilibrium Maxwell-Boltzmann
distribution times a correction factor!:

1-Pr( ¢ £ ¢
S=£ |1 -1|¢-ql, f & 6
f fMB[ g ( S t)e ey ©)
where £ = p — mu is the peculiar momentum, Pr = cpu/A is the Prandtl number,
cp = Skg/2m is the specific heat at constant pressure and P; = pRT = nkpT is the

ideal gas equation of state, with R being the specific gas constant. The
Maxwell-Boltzmann distribution fs is given by:

n 2
= — - 7
Je = kg TP eXp( 2kaT) @

E. Shakhov, “Approximate kinetic equations in rarefied gas theory”, Fluid Dynamics 3, 95 — 96
(1968).
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The simplified Enskog collision operator

The second term of J¢, namely Ji(f,f), can be approximated by replacing the
distribution functions (f*, f;".f.f1) with the corresponding equilibrium distribution
functions. By using fyfy. | = fuefus,1, @nd integrating over k and py, one obtains’:

J1(E. ) = Ji(fues fue) =
— bpoxfus {§ [V In(p*xT) + = (g“ - —) VIn T]

+§ 2¢¢: Vu+ (52 - g)Vu]} (8)
where ¢ = £/ V2RT.

With the above approximations and considering no external force, the Enskog
equation becomes:

g_ft _fo = _—(f fs) + J1(fues fue) (9)

'G. M. Kremer, An introduction to the Boltzmann equation and transport processes in gases
(Springer-Verlag, Berlin Heidelberg, 2010).
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The simplified Enskog collision operator

Multiplying the Enskog equation with the collision invariants 1, p and p?/2m and

integrating over the momentum space yields the following conservation equations
for mass, momentum and energy’:

Dp
— +poVu =0 10a
D HPVH (10a)
Du
2 ivP=—v.1l 10b
P (10b)
D
ij+PV-u=—V-q+H:Vu (10c)

where D/Dt = 0, + u - V is the material derivative and P = P;(1 + bpy) is the

equation of state of a non-ideal gas. The heat flux ¢ and the viscous part of the
stress tensor I,z are given by:

2
q=-AVT; n=—yva.u—u(vuﬂvu)T—gfv-u) (11)

where 1 is the identity matrix.

'G. M. Kremer, An introduction to the Boltzmann equation and transport processes in gases
(Springer-Verlag, Berlin Heidelberg, 2010).
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The simplified Enskog collision operator

The bulk viscosity u,, shear viscosity 4 and the thermal conductivity A are given
by':

16
Hy = 5 Hob’P%X, (12a)
1 4 12
u=1P; = puobp| — + 0.8 + — 1+—bp)( (12b)
bpy 25
51P; 1 9 32
=20 124 =142 12
=58 = Obp(bp/\/+ +25( " ox )bp)‘) (120)

where po = et VT /Ty is the viscosity coefficient for hard sphere molecules, with
Uref representing the viscosity coefficient for dilute gases at temperature Ty, and
Ao = At is the reference thermal conductivity at temperature T,. The reference

values are:
5 mkgT T5kg kaTo
= —— 4 / —, A 13
Hrel = 1602 n = 6dmo? (13)

'G. M. Kremer, An introduction to the Boltzmann equation and transport processes in gases
(Springer-Verlag, Berlin Heidelberg, 2010).
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The simplified Enskog collision operator

For the dense gas the Prandtl number is:

~ 2 1+ %bp)(+ % (1 + 17r—2)(bp)()2
31+ Shoy + 5 (1 + %)(bp)()2

Pr (14)

The Chapman-Enskog expansion of Eq. (9) gives the relations between the
relaxation time 7 and the transport coefficients. It follows that the relaxation time 7
is given by:
M
o 15
=5 (15)
Note that the viscosity of the dense gas of a fixed reduced density n can be
changed by varying the molecular diameter o and the number density n. By using
the reference mean free path I = m/ V2no2ny, one can define the Knudsen

number as: |
Kn= ———— (16)

V2ro2ny(n)L
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Reduced distributions - 1D flows

The y and z degrees of freedom can be integrated out and two reduced
distribution functions, ¢ and 6, can be introduced as?:

2 2
pytp
¢1D(x,px’ t) = fdpydpzf(x’Pa t), 91D(x,px, t) = fdpydpz - m Zf(x’p’ t) (1 7)

The macroscopic quantities are given by:

n 1
Py =fdpx Px|#1Ds (18)
I &

xx m

3nkpT 1)/( & 1
[2 qf )=fdpx(%](%¢m+§9m) (19)

The evolution equations for the reduced distribution functions are:

_ A4S ]¢1D
9 [ +122 $io| _ _L{¢—¢1p o (20)
at 91D max 01D T 91D_91SD J11D

2V. E. Ambrus and V. Sofonea, “Quadrature-based lattice Boltzmann models, for rarefied gas flow,”
in Flowing Matter, (Springer International Publishing, Cham, 2019) pp. 271-299.
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Reduced distributions - 1D flows

In the above the, ¢5 and 6y are given by:

_ 2
bs :fr\fa[l'i'l—Pr( gx —3)5):%},

SP,‘kaT kaT

1-Pr [ &
=n .1 T = - 1 XYx
* SpikaT (kaT )f 1 }

while the first order corrections J and J¢ are:

05 = 2ksTf% |1

2
J?‘D = [fxé? Iny + 2£,0,Inp + 5( i T )6 Uy

+i & +§—x 0. InT|(fbpy (21a)
0 m2k3T 3m x
3
Jie = —[‘fxﬂxln/\/+2§x6xlnp+ g( )a Uy
N §3 LT
= 8. In T | 2mkgTf"®b, 21
O(mzkg 3) n]me o (21b)
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Finite difference Lattice Boltzmann

We introduce the notation ¢ € {¢, 6} to represent the reduced distributions, and
the macroscopic quantities are evaluated by replacing the integrals with
quadrature sums. The distribution function ¢ is projected on a set of Hermite
polynomials up to order N°:

AN
Yx,p, 1) = ¢ (x,p, 1) = w(py) Z Eat’(x’ HDH(pr), ae(x,t) = fdpl//(x,l?, HH(p)
=

The momentum set {p;} has Q > Omin elements that belong to the set {r;},
1 <k < Q, of the roots of the full-range/half-range Hermite polynomial Hy(p) and
the their associated weights wy given by

2
! Pra
T T ¢ : (22)
[Ho+1(r)] 5.1 () [Pk +050/ m]
where ag = bo+1.0+1/bo.0 and by, represents the coefficient of p* in b.(p):
I
bep) = > beap'. (23)
s=0

3X. Shan, X.-F. Yuan, and H. Chen, Journal of Fluid Mechanics 550, 413=441 (2006)
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[ truncated expansion

The equilibrium functions fX, = f,s(x, pi. t) are replaced by*:
@ Full-range Hermite:

v 12121 | mKe TV fmu\E%
_ H@ -1 (=] - 24
8k Wk{z:(; f(pk) Z; 2xs!([_ 2s)' ( p% ) (PO ) ( )

@ Half-range Hermite: by writing g(») = 8(p)g+(p) + 6(p—)g—(p), with

w(lp)) <
ge = —— > Gibu(lpl), (25)
Po =

where G = [ dpg()be(p),  G; = [* dp gp)be(—p).

4V. E. Ambrus, V. Sofonea, J. Comput. Phys. 316 (2016) 1-29.
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Lattice Boltzmann

The non-dimensionalized form of the evolution equation of the functions ¢, and 6,

IS:
e ¢
0 [ +&£ G| _ 1P~ Isuk N Il . (26)
ot\e,) mox\e, T\ 6 — s Jf;k
The macroscopic quantities are evaluated as:
oul= Z Pk | ks (27)
I k=1 ﬁ
InksT) L 1)( & 1
[2 . )72 a [ﬁ¢k+§ek] (28)
k=1 m

The time evolution is performed using the TVD RK-3 scheme and the advection is
performed using 5" order WENO numerical scheme.
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Boundary condition
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@ Diffuse boundary conditions are applied at L.. Confinement ratio defined as
R = Lph/O'.
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Stationary gas
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Fourier flow - Setup

T, - AT 7i» T; T, + AT
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Fourier flow - AT = 0.5; L.
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Fourier flow - AT =0.5; L. =3
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Fourier flow - heat flux ¢,
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Figure: Heat transfer: (a) Heat flux ¢, values at temperature difference of AT =

confinement ratios of R =
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Couette flow

_uy Ni» Tl uy

23/31

oc and Victor Sofonea ( Department of Physi Confined dense gas flows




Couette flow - U,, = 1.0; Velocity
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Couette flow - U,, = 1.0; Temperature
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Poisseuille flow

Ni» Tl
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Poisseuille flow - a, = 0.001; Velocity
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Poisseuille flow - a, = 0.1; Velocity
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Poisseuille flow - a, = 0.1; Temperature
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Poisseuille flow - Mass flow rate
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Conclusions

@ The simplified Enskog collision integral can be successfully employed when
dealing with moderately dense gases.

@ The numerical results obtained for the Couette flow, Fourier flow, and
Poiseuille flow exhibit good agreement with the solutions obtained using the
Particle method with much smaller computational time.

@ Within the range of flow parameters investigated, our kinetic model captures
the effects of denseness, density inhomogeneity, and nonequilibrium
phenomena.

@ This work was supported through a grant of the Ministry of Research,
Innovation and Digitization, CNCS - UEFISCDI, project number
PN-11I-P1-1.1-PD-2021-0216, within PNCDI IlI.
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Poisseuille flow - Mass flow rate
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Reduced distributions - 2D flows

The y and z degrees of freedom can be integrated out and two reduced
distribution functions, ¢ and 6, can be introduced as®:

2

¢2D(x’pxs t) = fdpzf(xsp’ t)a 02D(x’px’ t) = fdpz%f(x»P»t) (29)

The macroscopic moments can be evaluated as:

n 1
pu; =fd217 pi |90, (30)
IT; &i&i/m

nksT)  ( » &g 1
(2 0 ]—fdp(gi/ J(_¢2D+292D) (31)

The evolution equations for the reduced distribution functions are:

g P b - J¢2D
9 |40) (&_ e ) $2 ¢2 ¢32D | (32)
ot 6op mox mady 6op 6op — 92D JE2D

5V. E. Ambrus and V. Sofonea, “Quadrature-based lattice Boltzmann models, for rarefied gas flow,”

in Flowing Matter, (Springer International Publishing, Cham, 2019) pp. 271-299.
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Reduced distributions - 2D flows

In the above the, ¢3, and 6, are given by:

S _ M 1-Pr f)% + é:yz
?op _fxy [1 + SPikaT( mkgT —41(&qx +‘nyy) s (33)
1-Pr (£+&
D = kBTf SPikaT ( kT - 2) (&xqy + fyqy)] (34)

while the first order corrections J‘” and Jf’ are:

. é‘: é'_-2 §2
IR = _1E9, ny + 26,01 x 2|,
£ [§ nyt 28 0cdnpt [kaT 2mksT ] “

3¢, (E+E 2
- = InT
+10m(kaT 3)%

2 2 2

6 & &+E
JZP =~ [gxa Iny + 2&,0 lnp+§[ kT zkaT—l]é)ux

3¢, (6+& 4
2o
+10m(kaT T3

Confined dense gas flows

fatbpy  (35a)

2mkgTfy’bpx  (35b)
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Fourier flow - AT =0.5; L. =9
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Figure: Heat transfer: Reduced density profiles at temperature difference of AT = 0.5,
three values of the initial density 7o = {0.01,0.1,0.2} and R = 10.
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Fourier flow - AT =0.5; L. =3
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Figure: Heat transfer: Reduced density profiles at temperature difference of AT = 0.5,
three values of the initial density o = {0.01,0.1,0.2} and R = 4.
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Couette flow - U,, = 1.0; L. = 9; g,
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Figure: Couette flow: Transversal and longitudinal heat flux at a wall velocity of U,, = 1,
three values of the initial density 1o = {0.01,0.1,0.2} and (a) R = 10 and (b) R = 4.
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Poisseuille flow - a, = 0.1; Transversal heat flux
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Figure: Poisseuille flow: Transversal heat flux g, at an external acceleration of a, = 0.1,
three values of the initial density o = {0.01,0.1,0.2} and (a) R = 10 and (b) R = 4.
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Poisseuille flow - a, = 0.1;Longitudinal heat flux
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Figure: Poisseuille flow: longitudinal heat flux ¢, at an external acceleration of a, = 0.1,
three values of the initial density o = {0.01,0.1,0.2} and (a) R = 10 and (b) R = 4.
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