SYLLABUS

10 Information on the study progra	
1.1 Higher education institution	West University of Timisoara
1.2 Faculty	Physics
1.3 Department	Physics
1.4 Study program field	Physics
1.5 Study cycle	Master
1.6 Study programme / Qualification	Physics and Technology of Advanced Materials

1. Information on the study programme

2. Information on the course

2.1 Course title			X-ray characterization of materials				
2.2 Lecture instruct	or		Conf. Dr. Barvinschi Paul				
2.3 Laboratory instr	ructor		Conf. Dr. Barvinschi Paul				
2.4 Study year	2	2.5 Semester	4	2.6 Examination type	Е	2.7 Course type	DS

3. Estimated study time (number of hours per semester)

3.1 Attendance hours per week	4	out of which:	2	out of which:	-	out of which:	2
		lecture		seminar		laboratory	
3.2. Attendance hours per semester	56	out of which:	28	out of which:	-	out of which:	28
		lecture		seminar		laboratory	
3.3. Distribution of the allocated amount of time*							hours
Study of literature, course handbook and personal notes							28
Supplementary documentation at library or using electronic repositories							28
Preparing for laboratories, homework, reports etc.							28
Tutoring						14	
Exams						8	
Other activities							
3.4 Total number of hours of individual study 106					•	•	
3.5 Total number of hours per semester 162							

3.6 Number of credits (ECTS)	7

4. Prerequisites (if it is the case)

4.1 curriculum	Classical Electrodynamics, Atomic Physics, Solid State Physics, Numerical Modeling and Simulation
4.2 competences	General skills: Creative application of research methods and problem solving; Elaborating studies and reports; Capacity to manage working groups and to communicate in different situations. Competente profesionale: Skills in problems solving; Skill in using laboratory equipment; Skills in using computers and software for numerical simulation of physical phenomena.

5. Requirements (if it is the case)

5.1 for the lecture	Laptop (or PC), personal notes
5.2 for the seminar / laboratory	Lab notes, PCs with data base for X-ray phases identification (PDF or Match), PowderCell, EVA, MATLAB, X-ray diffractometer and XRF
	equipment.

6. Specific acquired competences

	1. Knowledge and understanding:
	 Capacity of analyze and synthesize (adaptability to new situation, realization of synthesis and comparisons, correlations and propinquity). Basic knowledge Basic knowledge necessary to profess (presentation, dialog) Knowledge of foreign languages (English) 2. Technical skills:
Professional competences	 Theoretical understanding Deep understanding (of basic notions, of physical parameters) Experimental skills (the understanding of experiments) Computational skills (PC uses for research, data acquisition) Culture in Physics domain Bibliography investigation Learning skills Skills for team working The capacity to transfer the acquired knowledge in practical applications Capacity to plan and organize experimental or theoretical applications 3. Practical skills
	 Capacity of solving characteristic problems for real physical systems. Capacity of real mechanical systems idealization by building up models. 4. Attitude Capacity of critical evaluations and auto evaluation. Capacity of communication inside a group Concern for a permanent improvement of quality.
Transversal competences	 Adaptability to new situations by taking decisions and assuming responsabilities; The ability to manage complex projects and to develop partnerships in economic environments; Creativeness and initiative in solving complex problems

7. Course objectives

7.1 General objective	To present the most important techniques for the characterization of materials using X-rays methods
7.2 Specific objectives	 Lecture objectives: -To present theoretical knowledge necessary for the understanding of the processes involved in the interaction of X-rays with matter -To present the characterization techniques that use X-rays to study different physical systems Laboratory objectives -To offer the possibility to work with an X-ray diffractometer -To form teamwork skills -To develop the skills necessary for the acquisition and analysis of experimental data, and to present the results

8. Contents

8.1 Lecture 1 eaching methods Remarks, details

Properties and nature of X-rays. Sources of X-rays.	Lecture, introductory conversation, heuristic	References (in the X-ray lab library):
Interaction of X-rays with matter.	conversation, illustration, use of analogies and algorithms, learning retention and deepening	[1] – [3]
Kinematical theory of X-ray diffraction. Laue and Bragg	conversation.	
equations. Ewald representation.		
Scattering by a free electron. Scattering by an atom.		
Scattering from several atoms.		
Diffraction by a small crystal. The unit cell structure		
factor.		
Width of diffraction maxima.		
The integrating intensity from a small crystal and the		
Lorentz factor		
Lattice vibrations and the Debye-Waller factor		
The integrating intensity from a powder sample		
Scattering of X rays on disordered and amorphous		
materials.		
Snell's law and the Fresnel equations in the X-ray region		
Specular reflection from multilayers		
X-ray spectroscopies (XAFS, XRF, XPS).		

Recommended literature:

1. L.Als-Nielsen, D. Mc Morrow: Elements of Modern X-ray Physics (Wiley, New York, 2001)

2. B.D. Cullity, Elements of X-Ray Diffraction, 2-nd edition.(Addison-Wesley, Reading, Mass., 1978)

3. V. Pecharsky, P. Zavalij: Fundamentals of Powder Diffraction and Structural Characterization of Materials (Springer, Berlin, 2005)

8.2 Laboratory	Teaching methods	Remarks, details
Elements of crystallography	Introductory conversation,	-The students will be asked to
	heuristic conversation,	answer questions meant to help
The X-ray lab. Equipment and radiologic security	learning-retention conversation	systematize their knowledge, then we will apply this knowledge for
Phase analysis and the use of PDF database: single phase	case studies, numerical modeling and numerical	solving specific problems. -The students will describe physical phenomena and systems
Phase analysis and the use of PDF database: multiple	sinulations.	using specific theories and
phases		instruments – experimental and theoretical models, algorithms,
Crystal structure determination: cubic structure		-The students will form / practice / develop their:
Crystal structure determination: hexagonal structure		data processing abilities and the ability to interpret
Determination of crystallite size.		team work abilities

Determination of lattice strain.		organization and investigation abilities		
Determination of texture.	-	-The students will use appropriate numerical and mathematical statistical methods when		
Determination of stress.		analyzing and processing subject- specific data.		
Determination of the Debye-Waller factor		=In order to obtain performance we aim to develop the student's ability to write a scientific report		
Quantitative analysis.		which will include the processing of experimental data and		
Rietveld refinement.		solutions regarding the application of X-ray		
Grazing-incidence diffraction on thin films.		characterization techniques.		
Recommended literature: C.Suryanarayana, M.Grant Norton: X-Ray Diffraction. A Practical Approach (Plenum Press, New York & London, 1998)				

9. Evaluation

Activity	Assessment criteria	Assessment methods	Weight in the final mark
9.1 Lecture	The students will identify the notions and will describe / explain the subject-specific phenomena in a given context.	-Final written examination (theory + problems) -PowerPoint presentation of a subject related to the topic of the course.	30%
9.2 Laboratory	 The students will apply their learning to solving problems. The students, grouped into teams, will process data using specific software packages and will correctly interpret the results. The students, grouped into teams, will write a scientific paper / report on a given subject. The teams will present these papers and will discuss them. 	Lab reports.	50%
9.3 Minimum needed performance for passing			
- To solve at least 50% of the problems at the written examination.			
- To obtain correct results at the labs.			
- To write the scientific paper / report on a given subject.			

Date of completion

Signature (lecture instructor)

Signature (seminar instructor)

03.10.2016

Conf. Dr. Paul BARVINSCHI

Conf. Dr. Paul BARVINSCHI

Signature (director of the department) Conf. Dr. Mihail LUNGU