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Abstract 

In most of the applications involving neural 

networks, the main problem consists in finding an 

optimal procedure to reduce the real neuron to 

simpler models which still express the biological 

complexity but allow highlighting the main 

characteristics of the system. We effectively 

investigate a simple reduction procedure which 

leads from complex models of Hodgkin-Huxley 

type to very convenient binary models of Hopfield 

type. The reduction will allow to describe the 

neuron interconnections in a quite large network 

and to obtain information concerning its symmetry 

and stability. Both cases, on homogeneous voltage 

across the membrane and inhomogeneous voltage 

along the axon will be tackled out. Few numerical 

simulations of the neural flow based on the cable-

equation will be also presented. 
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1. Introduction 

One of the most successful model explaining the functioning of the memory as an 

asynchronous neural network was proposed in 1982 by John Hopfield [1]. The network consists 

of n totally coupled units, that is, each unit is connected to all other units except itself and the 

units change information recursively between them. It is assumed that the individual units are 



randomly updated, preserving their individual states in the interval between two updates. 

Specific for the model is that no synchronization requirements are imposed, that is not a 

universal time is needed. The neurons are not updated simultaneously, but at different moments 

in a random order. Another supposition in the Hopfield model is that there is a symmetric 

transfer of information among units, the interaction weight for the transfer from the neuron i to 

the neuron j being the same as for the transfer in the opposite sense, jiij ww  .  

Intensive studies were devoted to this model, either in neurosciences for describing a 

bidirectional associative memory close with the human memory [2-3], or in artificial 

intelligence, as an important tool in programming or solving optimization problems [4-5]. The 

present paper belongs to the first type of approaches mentioned before and it has the following 

structure: after this introductive section, the second section will present basic facts on the 

Hopfield network seen as a nonlinear network of interacting neurons. It will be a monographic 

approach pointing out the main characteristics of the model, including its symmetry and strong 

stability. The third section will present, as a limit case of the general theory, the propagation of 

the neural flow along an isolated neuron seen as a free subsystem of a Hopfield neural network. 

The results will be compared with what is already known on the neural flow through an 

individual neuron. Some concluding remarks will end the paper.   

 

2. Neural networks with binary states 

The Hopfield network consists in a set of n interconnected neurons, all of them being active 

both in sending and in receiving information. The neurons could have binary states and the 

passage from one state to the other is the result of an activation process. For each neuron, the 

activation is produced randomly, asynchronously and independently of other neurons. The two 

activation values which define the two possible states of each neuron are usually chosen as +1 

and -1. The model is somehow an extreme simplification of the models trying to capture the 

biological complexity of the neural cells, as for example Hodgkin-Huxley one [6]. The main idea 

of these models is that the neuron membrane behaves as a capacitor with many conducting 

channels joining its two sides, the extracellular and the cytoplasmic ones. Different types of ions 

existing around could pass through the channels, either because of the electromagnetic forces 

(electric current), or because of the diffusion process due to the gradient of ion concentration 

(diffusive current). Moreover, different physical and chemical interactions existing inside the 



channel can generate supplementary currents, as a genuine current source. The electric circuit 

that fits best with these assumptions and is usually used for describing the dynamics of neurons 

is a capacitor in parallel with some linear and nonlinear conductors and with some 

supplementary ion pumps [7].  

 

 

FIGURE 1. Conduction through neural 

membrane 

We take into consideration, as in the Hodgkin-

Huxley model, that the main membrane currents 

are  KNa II ,   generated by the sodium and 

potassium ions. The conduction of all the other 

ions is represented by the current LI  seen as a 

supplementary ohmic leakage contribution. The 

conduction take place through voltage dependent 

channels with the resistance per unit area 

denoted by LKNa RRR ,, , respectively. 

mC represents the membrane capacitance per unit 

area. The equivalent electric circuit looks as in 

Fig.1, where mI denotes the synaptic and ion 

pump currents. In the Hodgkin-Huxley model 

the resistances, or more precisely the 

conductances Rg /1  of the Na and respectively 

K channels have rather complicated 

dependencies on the instant voltage V on the 

membrane, while Lg is constant (ohmic 

resistance). 

The first Kirchhoff law for the circuit can be written:   
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dt
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If the potential is not spatially constant, what is usually happening, the equation should contain 

an additional Laplacian term. This term will be neglected here, but will be considered in the next 

section of the paper. Here we intend to show a simple way on how the complicated Hodgkin-



Huxley model can be reduced to a binary one of the Hopfield type. Such a reduction supposes to 

impose supplementary constraints on the dynamics or more precisely on the time evolutions of 

the voltages on capacity, respectively on resistances. The idea is to consider that the voltage 

dependence of Nag  and Kg  determines a delay on which the voltage U on the resistive channels 

will go to the voltage V on the capacitor. So, we make a distinction between the voltage V 

expressing the capacitive properties of the cell and the voltage U reflecting the membrane 

conductance. The two dynamical variables have quite different time scale evolutions, but tend 

asymptotically to each other. The equation (1) can be spited in two first order differential 

equations of the general form: 
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The requirement that U approach asymptotically V imposes that 0),(  
VU

UVg .  

 The first equation in (2) can be solved assuming small values of the membrane 

capacitance. This assumption is in agreement with the experimental data and with the fact that 

the membrane potential V tends to remain constant almost the time. Under this assumption, we 

have: 
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The equation (3) can be solved and it gives an expression of the voltage V in terms of U for 

various constant values of the external currents mI . 

It has been noted [2] that V is a multi-valued function of U. More precisely, the representation 

)(UfV   can be mainly splitted in two branches: a mostly liner branch for voltages under the 

resting potentials mVUV 65  and a second nonlinear one for higher values. To separate the 

two branches a binary variable S can be used. It can be chosen so that 1S for the upper region 

and 1S for the other one. The dependence )(UfV   becomes now a function of the form 

),( SUfV   and so the second equation from (2). Simulations have shown that the external 



currents mI  have not an appreciable influence on the dynamics in the region 1S  and a good 

agreement with the real neuron behavior can be described replacing the system (2) by the 

following equations: 

 

   )()1()( tISctUba
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The coefficients a, b and c are numerical coefficients, depending on the characteristics of the 

neuron. A voltage shift with the resting potential and a current re-scaling allow to partially 

absorb such irrelevant coefficients. We will consider: 
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With the notation 0bUaA  , the equation (4) becomes: 

  

   )()1()()( tSAtubtu        (6) 

 

The change of variables (5) leads to an expression for the binary variable of the type: 
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The equations (6) and (7) represent direct route to the Hopfield model for neural networks. This 

model is given by the following equation:  

nktuGwubtu
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The connection becomes evident if we are considering n neurons interconnected with the 

interaction weights: 
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The functions )( jj uG describe the contribution of the neuron j to the impulse traveling through 

the neuron k. It is clear that for one single neuron, the condition (9) assures the reduction of the 

equation (8) to the model (6). 

As we already mentioned, the Hopfield model (8) has been intensively studied, both as a 

model for a real neural network and as a mathematical tool for solving optimization problems. 

We will limit here to mention some results concerning the stability of the model, one of its strong 

characteristics. In [4], the stability around the equilibrium point 0ku  has been studied, in the 

absence of external inputs, 0k  and for the choice of the transfer function in the form: 

 

   nkuauG kkkkk ,...,1)arctan()(        (10) 

 

In some cases the external currents cannot be considered as vanishing, but in almost all neural 

network applications they can be considered constants over a time interval of interest, kk c . 

Within this last assumption, the equilibrium points are defined as solution of the following 

equation: 
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Here are the main results reported in [4]. If some 0ka and 0k  exist, the unperturbed system 

accepts a Lyapunov function of the form: 
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The point 0u is an equilibrium point of the neural network (8). It is exponentially stable if: 

1. all the external inputs are zero: nktk ,...,1,0)(   

2. the interconnections satisfy the estimate: ,)( jjkkjjkjk uNuuGwu   with jkN  real 

constants. 

3. there exists a vector NR , such that the test matrix S = [sij] is negative definite, where 
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Consider now the Hopfield model in the perturbed version: 
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The main system (8) is “robust” if for every its asymptotically stable equilibrium eu  and for 

every 0 , there is 0  so that, when    iejejiji UuGuGAb ,)(,)(,,max ' , the perturbed 

system (14) has an equilibrium eu~  with  

   ee uu~          (16)   

 

 3.  Neural networks with inhomogeneous potentials 

 

 In the previous section the case of a constant potential along the axon has been 

considered. As we already mentioned, this is a strong assumption which is usually not observed 

by real neurons. A more realistic supposition is that the flow travel with constant velocity   and 

that the impulse maintains its original form during the propagation. Under these conditions, the 

voltage depends on the point where is calculated, ),( txuu  , the dynamics obeys the wave 

equation and the propagation regime is called steady-state regime. It is described by an equation 

of the form: 
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Let us come back now to the Hodgkin-Huxley model for a long squid axon. Let us denote by 

mr  the electric resistance of the unit length of the axon and suppose that the variation of the 

potential along the axon satisfies a relation of the form:   
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In the absence of ion pumps, the current propagating along the axon is a sum of the intracellular 

current and extracellular currents (see Fig.1). The previous relation becomes:  
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Taking a new derivation of the previous relation we get: 
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The conservation of total charge imposes that: m
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The equation from above is called general cable equation. Substituting this last equation in 

equation (17), we obtain: 
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This expression can be considered into the Hopfield model (6) and, passing to the “wave” 

coordinate
c

x
t  , we get second order differential equations of the form: 
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Where the coefficients A and B can be simple identified and 
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u   . We studied 

numerically the behavior of the voltage along the wave, and the results are presented in the 



figure below. It is interesting that the flow can expand for small values of A and strongly damp 

for bigger values.  

 

  

            A=1; B=-1,..,-4                                                                                                           A=-

1.5; B=-1,..,-100 

FIGURE 2. Numerical analyses 

 

In the considered situation, when the cable equation is valid for the axon, the neural flow 

propagates as damped oscillations. The equation is similar with what Van der Pol equation gives, 

mixing chaotic behavior with regular orbits.   

 

      4. Conclusions 

 

 The description of the transport phenomena along and across neurons is a not yet elucidated 

problem. There are many models trying to explain these phenomena, starting from very complex 

ones as Hodgkin-Huxley, continuing with integrate or fire models, till very simple ones as binary 

Hopfield-type models. The reduction of the complexity of a model allows detailed studies on 

network characteristics but spoils its biological content. Hopfield model for neural networks 

represents a special situation. Its simplicity gave force to the model and allowed to explain how 

the neural impulse is transmitted from one neuron to another. Despite the fact that it is designed 

to describe a network, the model works for individual neurons, too. It contains the main 

ingredients of Hodgkin-Huxley model and explains the stability of the flow along the axon. We 

presented here the main results concerning the stability of an isolated neuron, both for the case 

when a homogeneous voltage is considered and for the case of the propagation with a constant 



velocity. Forthcoming investigation will be devoted to a more carefully reduction of the model 

using the similarity reduction procedure [8]. Another possible approach which will be considered 

will be based not on the reduction, but on the description of the neuron using an extended phase 

space, as in [9]. These approaches will be complemented by trying to implement electronic 

circuits to model the neural flow.  

 

      Acknowledgments 

 

This work was partially supported by the strategic grant POSDRU/CPP107/DMI1.5/S/78421,  

Project ID 78421 (2010), co-financed by the European Social Fund – Investing in People, within 

the Sectorial Operational Programme Human Resources Development 2007 – 2013.  

 

       References 

 

[1] J. J. Hopfield,  Proc. Nat Acad. Sci. USA 79 (1982), 2554–2558. 

[2] L F Abbott,  J. Phys. A: Math. Gen. 23 (1990), 3835-3860. 

[3] M. Kouh, T.Poggio, Neural Comput. 20 (2008) 1427–1451. 

[4] M.Condon, G.G. Grahovski, in Scientific Computing in Electrical Engineering SCEE 2008, 

579-586 

[5] Wen, U.-P. et al., European Journal of Operational Research (2008), 

doi:10.1016/j.ejor.2008.11.002 

[6] L. Hodgkin, A. F. Huxley, J. Physiol 119 (1952), 500–544 

[7] R,.Constantinescu, C.Ionescu, M.Stoicescu – Rom.J.Phys, Vol. 58 (2013), no. 5-6. 

[8] R.Cimpoiasu, R.Constantinescu, J. Nonlin. Math. Phys. 13 (2006), 285–292.  

[9] R.Constantinescu, J.Math.Phys. Vol. 38 (1997) 2786-2794. 

 

 


