CALCULATION OF THE CRYSTAL FIELD PARAMETERS FOR Eu³⁺ DOPED IN SrAl₂O₄ AND SrIn₂O₄ SPINELS

M. L. Stanciu

Department of Physics, West University of Timisoara, 3200223 Timisoara, Romania

Article Info Received: 12December 2011 Accepted: 19 March 2012

Keywords: energy levels, crystal field parameters, normal spinel.

Abstract

Strontium aluminate (SrAl₂O₄) and the indium aluminate (SrIn₂O₄) spinels have been proven to be efficient host materials, which offer the possibility of generating broadband emission after doping with rare earth trivalent ions. The present work is devoted to the calculation of the crystal field parameters and the energy levels of the trivalent europium doped in SrAl₂O₄ and SrIn₂O₄ spinels, using the superposition model of the crystal field. Using the intrinsic parameters for Eu³⁺- O²⁻ bonds, and the geometry structure of the each crystal, we modeled the CFP_s and simulated the low-lying energy levels schemes. The obtained results are compared with the experimental data and discussed.

1. Introduction

Strontium aluminate (SrAl₂O₄) has been proven to be efficient host material with a wide band gap, which offers the possibility of generating broadband emission [1]. The spinel SrAl₂O₄ has a two phase, where the phase α is monoclinic structure at low temperature, with space group P₂₁, with unit cell parameters a = 8.447Å, b = 8,816Å, c = 5,163Å, $\beta = 93,42^{\circ}$ and the β phase, a pseudo-hexagonal structure predominated at higher temperatures [2, 3].

The A site in the Sr^{2+} structure has tetrahedral coordination, with radius equal to 1.12 Å, so their crystallographic positions are too large for Eu³⁺ ions which have the radius equal to 0.95 Å, while the B site in Al³⁺ structure has distorted octahedral coordination. In this case, the Eu³⁺ ions will substitute the Al³⁺ ions which have the radius equal to 0.54 Å, without charge compensation [4], in the octahedral site and a new complex [EuO₆]⁹⁻ is created.

The structure of the strontium aluminate spinel SrAl₂O₄ is presented in the figure 1 [5].

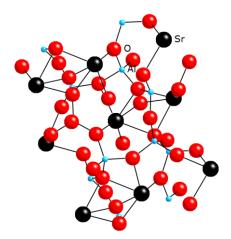


Figure 1. The structure of SrAl₂O₄[5]. Drawn with VESTA [6]

The structure of the indium aluminate (SrIn₂O₄) spinel belongs to the orthorhombic P_{nam} (62) (D_{2h}¹⁶), with eight formula units per cell. The constants lattice for SrIn₂O₄ spinel undoped is: a = 9.83Å, b = 11.5Å, c = 3.27Å [7] and the local symmetry of the Eu³⁺ in SrIn₂O₄ spinel is $C_s = \{E, \sigma_h\}$. The A site in the Sr²⁺ structure has tetrahedral coordination, while the B site in In³⁺ structure has distorted octahedral coordination. In this case, the Eu³⁺ ions will substitute the In³⁺ ions which have the radius equal to 0.79 Å in the octahedral site and a new complex [EuO₆]⁹⁻ is created.

The structure of the strontium aluminate spinel SrAl₂O₄ is presented in the figure 2 [8].

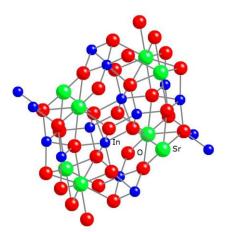


Figure 2. The structure of SrIn₂O₄ spinel [8]. Drawn with VESTA [6]

The present work is devoted to the modelation of the crystal field parameters of the Eu^{3+} doped in the SrAl₂O₄ and SrIn₂O₄ spinels in the superposition model of the crystal field and simulation the low-lying energy levels of the trivalent europium doped in SrAl₂O₄ and

SrIn₂O₄ spinels, by diagonalization the Hamiltonian of the systems. The obtained results are compared with experimental data and discussed [9-11].

2. Modeling of the crystal field parameters

The crystal field created by the ligands of the host matrices $SrAl_2O_4$ and $SrIn_2O_4$ spinels type split the energy levels of the impurity ion Eu^{3+} .

In order to describe the energy levels of the ground state of rare-earth ions doped in crystals, we use the Hamiltonian [12]:

$$H = \sum B_k^q O_k^q \tag{1}$$

where:

 B_k^q -are the crystal field parameters (CFP) associated with the extended Stevens operators O_k^q .

Using the superposition model will be calculated the crystal field parameters. In this model the crystal field parameters may be expressed as [13-15]:

$$B_k^q = \sum_L \overline{B}_k(R_L) K_k^q(\theta_L, \phi_L)$$
(2)

where:

 K_k^q - are the coordination factors [13-15] defined in terms of the angles θ_L and ϕ_L of the L - ligand positions.

They $\overline{B}_k(R_L)$ are the intrinsic parameters and they are given by [13-15]:

$$\overline{B}_{k}(R_{L}) = \overline{B}_{k}(R_{0}) \left(\frac{R_{0}}{R_{L}}\right)^{t_{k}}$$
(3)

Here they $\overline{B}_k(R_0)$ are the intrinsic crystal field parameters corresponding to R_0 reference distance; R_L is the distance from impurity ion to ligand L and R_0 represents the reference distance; t_k are the power law exponents that are adjustable semi-empirical parameters [13-15].

The intrinsic crystal field parameters $\overline{B}_k(R_0)$ can be transferred from similar cluster $[\text{EuO}_6]^{9-}$ [13]. R_L can be approximate as [16]:

$$R_L \approx R_h + \frac{1}{2}(r_L - r_h) \tag{4}$$

where: R_h - is the distance between Sr^{2+} , Al^{3+} , In^{3+} and ligands.

Using the geometry of the host matrices [2, 3], the values of the intrinsic parameters $\overline{B}_k(R_0)$ for Eu³⁺ - O²⁻ can be transferred from [17-19].

For the adjustable parameters t_k we taken the values $t_2 = 5$, $t_4 = 9$ and $t_6 = 13$, given by the point charge model of crystal field theory. Thus, the crystal field parameters B_k^q from (1) are calculated, using the Esq. ((2)-(3)).

3. Results and discussion

In the Table 1 are given the reference distance (R_0) and crystal field intrinsic parameters for Eu³⁺- O²⁻ at reference distance for the Eu³⁺ ion for both spinels.

$Eu^{3+} - O^{2-} (SrIn_2O_4)$				
$R(\text{\AA})$	$R_0(\text{\AA})$	$\overline{B}_2(cm^{-1})$	$\overline{B}_4(cm^{-1})$	$\overline{B}_6(cm^{-1})$
	[17]	[17-19]	[17-19]	[17-19]
2.17	2.98	370	35	21
$Eu^{3+} O^{2-} (SrAl_2O_4)$				
$R(\text{\AA})$	$R_0(\text{\AA})$	$\overline{B}_2(cm^{-1})$	$\overline{B}_4(cm^{-1})$	$\overline{B}_6(cm^{-1})$
	[17]	[17-19]	[17-19]	[17-19]
2.52	2.98	370	35	21

Table 1. The intrinsic parameters

In the Table 2 are given the crystal field parameters of Eu^{3+} doped in SrAl₂O₄ and SrIn₂O₄ spinels, calculated in the superposition model.

 Table 2. The crystal field parameters

Parameter	Superposition Model (Eu ³⁺ : SrAl ₂ O ₄)	Superposition Model (Eu ³⁺ : SrIn ₂ O ₄)
B_2^0	244	1938
B_2^1	764	550
B_2^2	450	-1869
B_4^0	53	-4
B_4^1	116	-73

Parameter	Superposition Model	Superposition Model	
	(Eu ³⁺ : SrAl ₂ O ₄)	(Eu ³⁺ : SrIn ₂ O ₄)	
B_4^2	55	-1173	
B_{4}^{3}	182	-353	
B_4^4	63	-4567	
B_{6}^{0}	16	-1761	
B_6^1	14	-1504	
B_6^2	-117	-5270	
B_{6}^{3}	-70	105	
B_6^4	-13	-1054	
B_{6}^{5}	-300	-223	
B_{6}^{6}	36	8634	

With these parameters and the parameters of the free Eu^{3+} ions [20] we have diagonalized the Hamiltonian of the title system with SPECTRA, a computer program. The low-lying energy levels for this ion are presented in the Table 3.

Table 3. The energy levels of the Eu^{3+} doped in $SrIn_2O_4$ and $SrAl_2O_4$ spinels

Energy	Experimental	Calculate	Calculate
levels	[21-23]	(this work)	(this work)
		(Eu ³⁺ : SrIn ₂ O ₄)	(Eu ³⁺ : SrAl ₂ O ₄)
${}^{7}F_{0}$	0	0	0
${}^{7}F_{1}$	381	408	500
${}^{7}F_{2}$	988	1729	1085
${}^{7}F_{3}$	1987	2079	1940
${}^{7}F_{4}$	3076	3085	3030
${}^{7}F_{5}$	-	4108	3990
${}^{7}F_{6}$	-	5162	5345
${}^{5}D_{0}$	17182	17964	19207

Energy	Experimental	Calculate	Calculate
levels	[21-23]	(this work)	(this work)
		(Eu ³⁺ : SrIn ₂ O ₄)	(Eu ³⁺ : SrAl ₂ O ₄)
${}^{5}D_{1}$	-	20217	20163
${}^{5}D_{2}$	21322	21523	21668
⁵ <i>D</i> ₃	-	24482	24585
⁵ L ₆	25316	25541	25850

It can see from these tables that the calculated values are close with experimental one [23, 24] which confirm the validity of the superposition model of crystal field for this case.

Also, we have given the position of energy levels ${}^{7}F_{5}$, ${}^{7}F_{6}$, ${}^{5}D_{1}$, ${}^{5}D_{3}$, for systems Eu^{3+} : SrIn₂O₄ and Eu³⁺: SrAl₂O₄, which had not yet observed experimentally.

Conclusions

In the present paper has been performed the crystal field calculation parameters and the low-lying energy levels for Eu^{3+} doped in the SrIn₂O₄ and SrAl₂O₄ spinels.

The crystal field parameters of Eu^{3+} doped in $SrAl_2O_4$ and $SrIn_2O_4$ spinels have been calculated in the frame of the superposition model of the crystal field.

The low-lying energy level schemes of the europium ions in the studied host, has been calculated by diagonalizing the Hamiltonian of the system.

Reasonable agreement between the calculated and measured crystal field splittings confirms validity of the results obtained in this paper.

References

- 1. F.C. Palilla, A.K. Levine, M.R. Tomkus, J. Electrochem. Soc. 115 (1968) 642.
- 2. B.Y. Geng, J.Z. Ma, F.M. Zhan, J. Phys. Chem. Solid, 36 (1975) 57-60.
- Dongdong Jia, Xiao-jun Wang, W. Jia, W. M. Yen, Journal of Luminescence, 122–123 (2007) 311–314.
- 4. A. Baszczuk, M. Jasiorski, M. Nyk, J. Hanuza, M. Maczka, W. Strek, Journal of Alloys and Compounds, 394 (2005) 88-92.
- M.L. Stanciu, M.G. Ciresan, and N.M. Avram, Acta Physica Polonica A, 116 (4) (2009) 544-546.

- 6. K. Momma, F. Izumi, J. Appl. Crystallogr., 41 (2008) 653.
- 7. Girgis B.S., Youssef A.M., Alaya M.N., Surf. Technol. 10 (1980) 105.
- M. Stanciu, M.G. Ciresan, N.M. Avram, Analele Universității de Vest din Timisoara, Vol. LIV (2010) 124-128.
- Paulo J.R. Montes, Mario E.G. Valerio, Gustavo de M. Azevedo, Nucl. Instr. and Meth. in Phys. Res. B 266 (2008) 2923–2927.
- C. E. Rodriguez-Garcia, N. Perea-Lopez, G. A. Hirata and S. P. DenBaars, J. Phys. D: Appl. Phys. 41 (2008) 092005.
- Zhiping Yang, Jing Tian, Shaoli Wang, Guangwei Yang, Xu Li, Panglai Li, Materials Letters 62 (2008) 1369–1371.
- D.J. Newman, B. Ng., Crystal Field Handbook, Cambridge University Press, Cambridge (2000).
- 13. D.J. Newman, W. Urban, Adv. Phys., 24 (1975) 793.
- 14. D.J. Newman, B. Ng. Rep. Prog. Phys., 52 (1989) 699.
- 15. C. Rudowicz, J. Phys. C: Solid State Phys., 20 (1987) 6033.
- 16. W.C. Zheng, Physica B, 215 (1995) 255.
- 17. J. Newman, Aust. J. Phys., 30 (1977) 315.
- 18. S. Vishwamittar, P. Puri, J. Chem. Phys.61 (1974) 3720.
- 19. W.C. Zheng, H.N. Dong, S.Y. Wu and T. Sheng, Physica B, 344 (2004) 103.
- 20. W.T. Carnal, G.L. Goldman, K. Rajnak, R.S. Rana, J. Chem. Phys., 90 (1989) 3443.
- 21. C.E. Rodriguez-Garcia, N. Perea-Lopez, G.A. Hirata and S.P. DenBaars, J. Phys. D: Appl. Phys., 41 (2008) 092005.
- 22. Zhiping Yang, Jing Tian, Shaoli Wang, Guangwei Yang, Xu Li, Panglai Li, Materials Letters, 62 (2008) 1369–1371.
- 23. G. Liu, B. Jacquier (Eds.), Spectroscopic Properties of Rare Earths in Optical materials, Springer Verlag, Heidelberg (2005).
- 24. Paulo J.R. Montes, Mario E.G. Valerio, Gustavo de M. Azevedo, Nucl. Instr. and Meth. in Phys. Res. B 266 (2008) 2923–2927.