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Given the recent renewed interest in alternative description of gravity 

theories in terms of topological BF models (possibly with extra-

constraints) as well as in dual formulations of linearized gravity 

(DFLG), all consistent interactions in D=6 involving an Abelian BF 

model with a maximal field spectrum and the DFLG via a massless 

tensor field with the mixed symmetry of the type (3,1) are considered.   

 

 

1. Introduction 

In this paper we construct all consistent interactions in 6=D  spacetime dimensions 

between a massless tensor gauge field with the mixed symmetry of a two-column Young 

diagram of the type (3,1) and an Abelian BF model with a maximal field spectrum (a scalar 

field, two sorts of 1-forms, two types of 2-forms and a 3-form).  

The subject approached in this paper is important in theoretical physics due on the one 

hand to the fact that topological field theories [1], in particular BF models (with some extra 

constraints), are involved in the reformulation of general relativity in higher dimensions and 

supergravity in Ashtekar formalism [2]-[5], and, on the other hand, mixed symmetry-type 

tensor fields [6]-[9] furnish viable DFLGs. In view of this, our main task is the construction of 

consistent couplings in D=6 between a specific DFLG and a topological BF model. 

Our analysis relies on the deformation of the solution to the master equation [10] by 

means of cohomological techniques with the help of the local BRST cohomology [11]-[12]. 

The self-interactions in the (3,1) sector have been investigated in [13]. Under the hypotheses 

of analyticity in the coupling constant, spacetime locality, Lorentz covariance, and Poincaré 

invariance of the deformations, combined with the preservation of the number of derivatives 

on each field, we find a deformation of the solution to the master equation that provides 
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nontrivial cross-couplings. The same problem has been investigated previously [14] at the 

level of cross-couplings in = 5D  between the DFLG based on a tensor field with the mixed 

symmetry (2,1) and a topological BF model with a maximal field spectrum. 

 

2. The free theory  

The starting point is a free theory in 6=D , whose Lagrangian action is written as the 

sum between the Lagrangian action of an Abelian BF model with a maximal field spectrum (a 

single scalar field  , two types of one-forms H  and A , two kinds of two-forms B  and 

 , and a three-form K ) and the Lagrangian action of a free, massless tensor field with 

the mixed symmetry (3,1)  |t  (meaning it is antisymmetric in its first three indices 

 || = tt   and fulfills the identity 0]|[ t )  
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where 
 ][| tF  and 


  |FF  . 

Everywhere in this paper we use the Minkowski metric ),(  diag
   and also 

the 6-dimensional Levi-Civita tensor   valued like 1012345

012345   . 

The Lagrangian action is invariant under the gauge transformations  

   ,3=,=,=,2=0,= 








    BAH  (2) 

    



  || 3=,4=   tK , (3) 

where all the gauge parameters are bosonic, with 
  ,,,  completely 

antisymetric and 


  a tensor gauge parameter with the mixed symmetry (2,1). 

This generating set of gauge transformations is Abelian and off-shell, fourth-order 

reducible. In order to construct the BRST symmetry of this free theory, we introduce the field, 

ghost and antifield spectra. The fermionic ghosts   


,,,,,,= |
1 SCC   

correspond to the bosonic gauge parameters, the bosonic ghosts 

),,,,,(=2



 SCC   to the first-order reducibility, the fermionic ghosts 

 
  ,,,=3 C  to the second-order reducibility, the bosonic ghosts 

 4 = ,C
     to to the third-order reducibility and finally the fermionic ghosts 



102 

 

 
 C=5  to the fourth-order reducibility. For each field/ghost we introduce the 

corresponding antifield and denote it by a star superscript.  

Since both the gauge generators and the reducibility functions for this model are field-

independent, it follows that the BRST differential s reduces to  s , where   is the 

Koszul-Tate differential and   is the exterior differential along the gauge orbits. 

The BRST differential has a canonical action ),( Ss  , where its canonical generator 

satisfies the classical master equation, 0),( SS . The symbol (,) denotes the antibracket, 

defined by decreeing the fields/ghosts conjugated with the corresponding antifields. In the 

case of the free theory under discussion, the solution to the master equation takes the form 
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The solution to the master equation contains all the information on the gauge structure 

of the theory. In our case the solution to the master equation breaks into terms with the 

antighost number ranging from zero to five. The part with the antighost number equal to zero 

is nothing but the Lagrangian action of the gauge model under study. The components of 

antighost number equal to one are always proportional with the gauge generators. The 

absence of terms linear in the antighost number two antifields and quadratic in the pure ghost 

number one ghosts, in our case, shows that the gauge transformations are Abelian. The terms 

from (4) with higher antighost numbers give us information on the reducibility functions.  

 

3. Deformation of the master equation 

We can reformulate the problem of constructing consistent interactions among the fields 

of the theory as a deformation problem of the solution to the master equation corresponding to 

the “free” theory. If a consistent interacting gauge theory can be constructed, then the solution 

S to the master equation associated with the “free” theory, can be deformed into a solution S  

for the interacting theory 

  2

2

1 SggSSSS ,  (5) 
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 0),( SS , (6) 

such that both the ghost and antifield spectra of the initial theory are preserved. Projecting eq. 

(6) on various powers in the coupling constant, we find that the equivalent tower of equations 

has to be satisfied 

 0),( SS , (7) 

 0),(2 1 SS , (8) 

 ,0),(),(2 112  SSSS  (9) 

 ,0),(),( 213  SSSS  (10) 

   

Eq. (7) is satisfied by hypothesis, since S is the solution for the master equation for the 

starting theory.The construction of consistent interactions becomes equivalent to solving Eqs. 

(8)–(10), etc. 

 

4. Consistent Lagrangian interactions 

Using the method described in the previous section, we are able to determine the 

Lagrangian action for the interacting theory as 
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Meanwhile, we find the gauge transformations that leave invariant the above action, namely, 

   21 2=,= gWAgW    (12) 
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where we denoted 


A
d

dW
gD 1=  and  AgWD 3

)( =  . 

The Lagrangian action contains only interaction vertices of order one and respectively 

two in the coupling constant. It is interesting to note that there appear some self-interactions 

in the BF sector that are strictly due to the presence of the tensor field with the mixed 

symmetry (3,1) (in its absence they all vanish). The gauge transformations of all fields are 

deformed. The gauge algebra becomes open and the reducibility relations hold on-shell. 

The functions 
1,4=

)(
iiW , )(M  and 1,3=)( iiU  that appear in (11) are smooth functions 

depending only on the undifferentiated scalar field, restricted to satisfy the equations  
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We are only interested in the solutions to equations (18) –(21) that describe cross-

couplings, so only in the solutions with at least one of the functions 1U  or 2U  non-vanishing. 

There are two different types of such solutions to (18)–(21). The first type is described by the 

choice 

 ,0)()()()( 4321   WWWW   (22) 

with )(),( 31  UU and )(M  arbitrary smooth functions of  .  

The second type of solution in given by 
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 0)()()( 42   MWW  and 0)(1 U , (23) 

)(3 U is an arbitrary smooth function and )(3 W  and )(1 U  have to satisfy 

 0,=
)(

)()()(3 1
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whose solution is given by 
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