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Simulate the behavior of a quarter car suspension system with 

Simulink®. Consider only vertical movement of the car, neglecting roll 

and pitch. All movements of the car axes are modeled as having equal 

amplitude. The characteristic equations that describe the behavior of 

dynamical systems based on FBD (Free Body Diagram) of automotive 

suspension. We make the simulation model in six steps. In simulation we 

consider the damping coefficient, c, variable. The rest of parameters are 

constant (mass, speed and stiffness). The simulation parameters are 

defined in Mathlab®. We follow the final signal created on the 

oscilloscope. At the end of the study, we concluded the effect of damping 

coefficient changes over the comfort. 

 

 

 

1. Introduction  

The quarter car has been for a long time the par excellence model used in suspension 

design. It is a very simple model as it can only represent the bounce motion without taking 

into account pitch or roll vibration modes. However it is very useful for a preliminary 

design.[1] 

The response time of a suspension system for a vehicle can be analyzed by a simplified 

model like a system consisting of mass, spring and damper as shown in Figure 1. 

Assumptions: It considers only vertical movement of the car (without roll or pitch); It is 

assumed that the spring mass and the dumper mass are negligible; It ignores the tire mass and 

its damping properties; The input to the car wheel can be modeled as a sum of functions in 

two stages, the first function is the enter into the pit, and a second function is the exit from the 

pit.[2]  
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FIGURE 1. Simplified model of suspension 

 

Consider the parameters: Vertical movement of the car (the pit depth) is 0.15m; The 

input function is the initial step function starts after a horizontal desplacement of 450m from 

vertical movement of 0m, decreased to the level of -0,15m, and then returns to 0m after a 

horizontal movement of 1m; The car tire has a diameter of 0.305m; The speed of the car is 

20m/s (72km/h). 

 

2. Method and Samples 

This model takes into account only vertical movement and all movements of the car 

axes are modeled as having equal amplitude and occur at the same time to eliminate the need 

to calculate the pitch and roll of the vehicle. First are identified the state variables. The 

following are established the characteristic equations that describe the behavior of dynamical 

systems based on FBD (Free Body Diagram) of automotive suspension system as in Figure 

2.[5, 7] 

 

FIGURE 2. FBD of suspension system 

 

Where: mm is the weight of the car (unsprung mass), k is the spring constant, c is the 

damping constant, y2 is the perturbation of the road and y1 is the body movement. 

The characteristic equation: 
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Note: gravity is canceled by the initial displacement of springs. 
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h_start and h_end correspond to moment of time at witch the tire starts the entry in the 

pit and exit from it. 

To achieve the model of suspension in Simulink, I follow the diagram from Figure 3.[6] 

 

FIGURE 3. Diagram of suspension system for Simulink 

 

Model suspension system includes six steps. Step 1: The effect of the wheel on the 

entrance into the pit is simulated by adding two step functions, Step 1 and Step 2 together 

with the summation block. Step 2: Insert an integration block for converting acceleration in 

speed and speed in displacement. Step 3, 4 and 5: Enter three gain blocks, one for spring 

force, other for damping force and last for the body weghit. In addition introduces three 

summing blocks. Step 6: Insert one scope block and one “To file” block. The complet system 

is shown in Figure 4.[3] 

 

FIGURE 4. Diagram of suspension system in Simulink 
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The simulation parameters are defined in Matlab: 

clear all: %delete workspace 

%Define parameters of the simulation 

m=1000; %Car weight (kg) 

k=500; %Spring stiffness (N/m) 

c=100; %Damping constant (Ns/m) 

V=20; %Car speed (m/s) 

holedepth=0.15; %Hole depth (m) 

hole_width=1; %Hole width (m) 

holestart=450; 

hstart=holestart/V; %Time in which the tire come into the pit 

hend=(holestart+hole_width)/V; %%Time in which the tire exit from the pit 

%Run Simulink 

%sim('quartersuspension_model');  

load result.mat; %Load result file 

load input.mat; %Load input file  

%Plotting Results 

subplot(2,1,1); 

%Plotting input data 

plot(input(1,:),input(2,:)); 

%Plotting system  response 

subplot(2,1,2); 

plot(result(1,:),result(2,:); 

 

3. Results and Discussions 

Follow the finally signal created in Simulink restored on the oscilloscope. For each case 

we consider the diagram from Figure 5. 

 

FIGURE 5. The input of the wheel in the pit 

 

Consider the damping coefficient, c, variable. The rest of parameters are considered 

constant: m=1000kg, V=20m/s and k=500N/m. In the simulation we consider six different 

cases for damping coefficient: without damping c=0Ns/m shown in Figure 6, with lower 

damping c=10Ns/m shown in Figure 7, with optimal damping c=100Ns/m shown in Figure 8, 

with increased damping c=500Ns/m shown in Figure 9, with higher damping shown in Figure 

10 and in the last case we consider overcritical damping c=1500Ns/m, shown in Figure 11. 
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We consider this damping coefficient overcritical for stiffness k=500N/m and weight 

m=1000kg. Critical damping coefficient is determined by the formula:  kmccr 2  and 

result mNsccr /213.1414 . In this simulation we consider crcc  . 

 

 

FIGURE 6. Response without damping 

 

FIGURE 7. Response with lower damping 

 

FIGURE 8. Response with optimal damping 

 

FIGURE 9. Response with increased damping 

 

FIGURE 10. Response with higher damping 

 

FIGURE 11. Response with overcritical damping 

 

Conclusions 

When c=10Ns/m, the lack of damping leads to an uncomfortable ride, when 

c=100Ns/m, the system has improved damping characteristics and when c=500Ns/m the 

damping difficult produces reverberations and displacements. If the damping coefficient 

increases, the amount of reverberations in the system is reduced. With this simulation 

software may be imagine various situations similar to the real environment, thus saving 

money and time. 
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