NOTE ON THE SCHRÖDINGER EQUATION

C. Bizdadea, M. M. Bârcan, I. Negru, S. O. Saliu

Department of Physics, University of Craiova, 13 Al. I. Cuza Street, Craiova 200585, Romania

Article Info

Abstract

Received: 28 December 2011 Accepted: 22 January 2012

A second-order formalism leading to an equation describing the same dynamics as the Schrödinger one is developed under some compatible initial conditions.

Keywords: Lagrangian and Hamiltonian formalisms, Schrödinger equation.

It is well-known that the Euler-Lagrange [1] and Hamilton [2] equations are involved in many aspects of theoretical physics. On the one hand, the Schrödinger equation [3, 4] can be derived from the first-order Lagrangian

$$\Lambda_0 = \frac{i\hbar}{2} (\psi^* \dot{\psi} - \dot{\psi}^* \psi) - \frac{\hbar^2}{2m} (\partial_i \psi^*) (\partial_i \psi) - V \psi^* \psi. \tag{1}$$

On the other hand, the Hamiltonian formulation of the Schrödinger equation was involved in many applications of quantum mechanics [5]-[9].

In this paper we develop a second-order formalism leading to an equation that describes the same dynamics as the Schrödinger one under some compatible initial conditions. In the sequel, we restrict ourselves to the one-particle Schrödinger equation with a time independent potential $V(\mathbf{x})$.

From the canonical approach of (1), one infers the second-class constraints

$$\chi \equiv \pi - \frac{i\hbar}{2} \psi^* \approx 0, \ \chi^* \equiv \pi^* + \frac{i\hbar}{2} \psi \approx 0, \tag{2}$$

and the canonical Hamiltonian

$$H_0(t) = \int d^3x \left(\frac{\hbar^2}{2m} (\partial_i \psi^*) (\partial_i \psi) + V \psi^* \psi \right). \tag{3}$$

The notations π and π^* signify the canonical momenta conjugated with ψ , respectively ψ^*

$$[\psi(\mathbf{x},t),\pi(\mathbf{y},t)] = \delta^3(\mathbf{x}-\mathbf{y}) = [\psi^*(\mathbf{x},t),\pi^*(\mathbf{y},t)], \tag{4}$$

where the symbol [,] denotes the Poisson bracket. Thus, the Hamiltonian equations of motion can be written as $\dot{F}(\mathbf{x},t) = [F(\mathbf{x},t),H_0(t)]^{\bullet}$, (5)

where the Dirac bracket [10]-[12] takes the form

$$[F_{1}(\mathbf{x},t),F_{2}(\mathbf{y},t)]^{\bullet} = [F_{1}(\mathbf{x},t),F_{2}(\mathbf{y},t)] - \frac{i}{\hbar} \int d^{3}z [F_{1}(\mathbf{x},t),\chi(\mathbf{z},t)] [\chi^{*}(\mathbf{z},t),F_{2}(\mathbf{y},t)] + \frac{i}{\hbar} \int d^{3}z [F_{1}(\mathbf{x},t),\chi^{*}(\mathbf{z},t)] [\chi(\mathbf{z},t),F_{2}(\mathbf{y},t)].$$

$$(6)$$

After eliminating the second-class constraints (the independent co-ordinates of the reduced phase-space are ψ and ψ^*), with the help of (5) we find that the dynamics is governed by the equations of motion

$$\dot{\psi} = \frac{i\hbar}{2m} \partial_i \partial_i \psi - \frac{i}{\hbar} V \psi, \dot{\psi}^* = -\frac{i\hbar}{2m} \partial_i \partial_i \psi^* + \frac{i}{\hbar} V \psi^*, \tag{7}$$

which are nothing but the Schrödinger equations for ψ and ψ^* .

Now, we start with the Hamiltonian

$$\overline{H}_{0}(t) = \int d^{3}x \left(\pi^{*} + \frac{i}{2\hbar} \left(\frac{\hbar^{2}}{2m} \partial_{i} \partial_{i} \psi - V \psi \right) \right) \left(\pi - \frac{i}{2\hbar} \left(\frac{\hbar^{2}}{2m} \partial_{i} \partial_{i} \psi^{*} - V \psi^{*} \right) \right)$$
(8)

from which we derive the Hamilton equations²

$$\dot{\psi} = \pi^* + \frac{i}{2\hbar} \left(\frac{\hbar^2}{2m} \partial_i \partial_i \psi - V \psi \right), \tag{9}$$

$$\dot{\psi}^* = \pi - \frac{i}{2\hbar} \left(\frac{\hbar^2}{2m} \partial_i \partial_i \psi^* - V \psi^* \right), \tag{10}$$

$$\dot{\pi} = -\frac{i}{2\hbar} \left(\frac{\hbar^2}{2m} \partial_i \partial_i - V \right) \left(\pi - \frac{i}{2\hbar} \left(\frac{\hbar^2}{2m} \partial_i \partial_i \psi^* - V \psi^* \right) \right), \tag{11}$$

$$\dot{\pi}^* = \frac{i}{2\hbar} \left(\frac{\hbar^2}{2m} \partial_i \partial_i - V \right) \left(\pi^* + \frac{i}{2\hbar} \left(\frac{\hbar^2}{2m} \partial_i \partial_i \psi - V \psi \right) \right). \tag{12}$$

Regarding the equations (9-12) we choose the initial conditions³

$$\psi(\mathbf{x}, t_0) = \psi_0(\mathbf{x}),\tag{13}$$

$$\pi^*(\mathbf{x},t_0) = -\frac{i}{2\hbar} \left(\frac{\hbar^2}{2m} \partial_i \partial_i - V \right) \psi_0(\mathbf{x}).$$

²It is easy to see that the Hamiltonian (8) describes a non-degenerate system.

³It is obvious that the initial conditions (13-14) imply the relations $\psi^*(\mathbf{x},t_0) = \psi_0^*(\mathbf{x})$,

$$\pi(\mathbf{x}, t_0) = -\frac{i}{2\hbar} \left(\frac{\hbar^2}{2m} \partial_i \partial_i - V \right) \psi_0^*(\mathbf{x}). \tag{14}$$

Substituting (9) in (12) and (10) in (11) we derive the equations

$$\frac{\partial}{\partial t} \left(\pi^* - \frac{i}{2\hbar} \left(\frac{\hbar^2}{2m} \partial_i \partial_i \psi - V \psi \right) \right) = 0, \tag{15}$$

$$\frac{\partial}{\partial t} \left(\pi + \frac{i}{2\hbar} \left(\frac{\hbar^2}{2m} \partial_i \partial_i \psi^* - V \psi^* \right) \right) = 0, \tag{16}$$

which lead to

$$\pi^*(\mathbf{x},t) - \frac{i}{2\hbar} \left(\frac{\hbar^2}{2m} \partial_i \partial_i - V \right) \psi(\mathbf{x},t) = k(\mathbf{x}), \tag{17}$$

$$\pi(\mathbf{x},t) + \frac{i}{2\hbar} \left(\frac{\hbar^2}{2m} \partial_i \partial_i - V \right) \psi^*(\mathbf{x},t) = k^*(\mathbf{x}), \tag{18}$$

where $k(\mathbf{x})$ and $k^*(\mathbf{x})$ are some functions determined by the initial conditions. Writing down (17-18) for $t = t_0$ and using the initial conditions, we deduce the relations

$$k(\mathbf{x}) = 0 = k^*(\mathbf{x}),\tag{19}$$

such that (17-18) lead to

$$\pi^* = \frac{i}{2\hbar} \left(\frac{\hbar^2}{2m} \partial_i \partial_i - V \right) \psi, \, \pi = -\frac{i}{2\hbar} \left(\frac{\hbar^2}{2m} \partial_i \partial_i - V \right) \psi^*. \tag{20}$$

Inserting (20) in (9-10) we arrive at (7). In consequence, we have proved the next result: c_1 ($\psi(\mathbf{x},t),\psi^*(\mathbf{x},t),\pi(\mathbf{x},t),\pi^*(\mathbf{x},t)$) are solutions of equations (9-12) subject to the initial conditions (13-14) if and only if ($\psi(\mathbf{x},t),\psi^*(\mathbf{x},t)$) are solutions of equations (7) subject to the initial conditions (13).

It is easy to show that the Hamiltonian (8) comes from the non-degenerate second-order Lagrangian

$$\overline{\Lambda}_{0} = \dot{\psi}^{*}\dot{\psi} - \frac{i}{2\hbar}\dot{\psi}^{*} \left(\frac{\hbar^{2}}{2m}\partial_{i}\partial_{i} - V\right)\psi + \frac{i}{2\hbar}\dot{\psi}\left(\frac{\hbar^{2}}{2m}\partial_{i}\partial_{i} - V\right)\psi^{*}, \tag{21}$$

which is different from that used in [13]. At the Lagrangian level the initial conditions (13-14) take the form

$$\psi(\mathbf{x}, t_0) = \psi_0(\mathbf{x}),\tag{22}$$

$$\dot{\psi}(\mathbf{x}, t_0) = \frac{i}{\hbar} \left(\frac{\hbar^2}{2m} \partial_i \partial_i - V \right) \psi_0(\mathbf{x}). \tag{23}$$

Due to the fact that the Lagrangian (21) is non-degenerate the following standard result holds: c_1) $(\psi(\mathbf{x},t),\psi^*(\mathbf{x},t))$ are solutions to the Euler-Lagrange equations $\delta \overline{\Lambda}_0/\delta \psi=0$, $\delta \overline{\Lambda}_0/\delta \psi^*=0$ subject to the initial conditions (22-23) if and only if $(\psi(\mathbf{x},t),\psi^*(\mathbf{x},t),\pi(\mathbf{x},t),\pi^*(\mathbf{x},t))$ are solutions of equations (9-12) in the presence of the initial conditions (13-14).

Thus, results c_1 and c_2 lead to the following conclusion: the solutions to the Euler-Lagrange equations $\delta \overline{\Lambda}_0 / \delta \psi = 0$, $\delta \overline{\Lambda}_0 / \delta \psi^* = 0$ subject to the initial conditions (22-23) coincide with the solutions to the equations (7) corresponding to the initial conditions (13).

Acknowledgment

The work of M. M. Bârcan was partially supported by the strategic grant POSDRU/88/1.5/S/49516, Project ID 49516 (2009), co-financed by the European Social Fund-Investing in People, within the Sectorial Operational Programme Human Resources Development 2007-2013.

References

- 1. J.-L. Lagrange, Mécanique analitique, Courcier (1811).
- 2. W. R. Hamilton, Phil. Trans. R. Soc. (part I), (1835) 95.
- 3. E. Schrödinger, Ann. der Physik, **81** (1926) 109.
- 4. E. Schrödinger, Phys. Rev. **28** (1926)1049.
- 5. G. Wentzel, Z. Phys. **38** (1926) 518.
- 6. H. A. Kramers, Z. Phys. 39 (1926) 828.
- 7. L. Brillouin, J. Phys. **7** (1926) 353.
- 8. J. Schwinger, Phys. Rev. 82 (1951) 914.
- 9. D. Bohm, Phys. Rev. **85** (1952) 166.
- 10. P. A. M. Dirac, Can. J. Math. 2 (1950) 129.
- 11. P. A. M. Dirac, Lectures on Quantum Mechanics, Academic Press, New York (1967).
- 12. M. Henneaux, C. Teitelboim, Quantization of Gauge Systems, Princeton Univ. Press, Princeton, (1992).
- 13. A. A. Deriglazov, Phys. Lett. **A373** (2009) 3920