SPIN-HAMILTONIAN PARAMETERS FOR CrLi³⁺ DOPED IN LiNbO₃

N. M. Avram^{1, 2}, M. G. Brik³, C. N. Avram¹, M. G. Ciresan¹, E. L. Andreici¹

¹Department of Physics, West University of Timisoara, Bd. V. Parvan 4, Timisoara 300223, Romania ²Academy of Romanian Scientists, Splaiul Independentei 54, Bucharest 050094, Romania ³Institute of Physics, University of Tartu, Riia 142, Tartu 51014, Estonia

Article Info

Received: 7September 2011 Accepted: 19 November 2011

Keywords Cr³⁺, spin-Hamiltonian parameters, two-spin-orbit interaction model.

Abstract

By using crystal field theory, the spin-Hamiltonian parameters [zero-field splitting D, the gyromagnetic factors g (g_{\parallel} and g_{\perp}) and the first excited state splitting $\delta({}^{2}E)$] for the Cr_{Li}³⁺ doped in LiNbO₃ have been calculated from the higher-order perturbation formulas. The method used is based on the two-spin-orbit coupling parameter model, in a cluster approach. The g parameters were also calculated as a second derivative of the energy, method implemented into ORCA computer program. The results were discussed and good agreement with experimental data was demonstrated.

1. Introduction

Electron paramagnetic resonance (EPR) is a powerful technique to study the local structure and electronic properties of paramagnetic impurity ions in crystals and analyze the local structure around an impurity ion. The EPR spectra of Cr^{3+} :LiNbO₃ have been extensively studied and they show intense axial EPR spectra attributed to Cr^{3+} ions substituting for Li or Nb ions [1-9]. Up to now, however, these useful experimental results, especially those concerning the spin Hamiltonian parameters (zero-field splitting *D* and *g* factors g_{\parallel} and g_{\perp}) and the first excited state splitting $\delta({}^{2}E)$ for the Cr_{Li}^{3+} doped LiNbO₃ have had no satisfactory theoretical interpretation.

In this paper we calculated the *g* factors, zero-field splitting *D* and $\delta({}^{2}E)$ from the perturbation formulas based on the two-spin-orbit coupling parameter model in a cluster approach, in trigonal symmetry for $\operatorname{Cr}_{\mathrm{Li}}^{3+}$: LiNbO₃ crystal. In this model the contributions due to

the spin-orbit coupling coefficient of the central $\operatorname{Cr}_{\operatorname{Li}}^{3+}$ ion and that of O^{2-} ligands are both taken into account. The crystal field parameter Dq, the Racah parameters B, C, and the trigonal crystal field parameters v and v' are taken from optical spectra data. The Macfarlane's high order perturbation formulas were used.

2. Theory

It is well known that for $\operatorname{Cr}^{3+}(\operatorname{3d}^3 \operatorname{configuration})$ ions the orbital singlet ground state 4A_2 (⁴F) splits, in trigonal symmetry, into two Kramers doublets, separated by an interval $2D = \left[{}^4A_2(2\overline{A}) - {}^4A_2(\overline{E})\right]$, whereas the first excited state ${}^2E({}^2G)$ splits into two levels separated by an interval $\delta({}^2E) = 2E(\overline{E}) - {}^2E(2\overline{A})$.

We consider the full Hamiltonian of a 3d³ transition-metal ion in crystal as [10]

$$H = H_{ee}(B,C) + H_{SO}(\xi,\xi') + H_{tri}(v,v') + H_{CF}(B_{kq}) + H_{z}$$
(1)

where $H_{ee}(B,C)$, $H_{so}(\xi,\xi')$, $H_{tri}(v,v')$ represent, respectively, the Coulomb interactions (expressed in terms of the Racah parameters *B* and *C*), the spin-orbit coupling (with the spinorbit coupling parameter ξ for an impurity ion and ξ' for the ligands), the trigonal distortion of octahedral site of 3d³ ion (*v* and *v*' are the net trigonal crystal field parameters). H_z is the Zeeman Hamiltonian.

The crystal-field Hamiltonian H_{CF} depends on the crystal field parameters (CFP) B_{kq} , and in Wybourne notation, for a trigonal symmetry is given as [10]

$$H_{CF} = B_{20}C_0^{(2)} + B_{40}C_0^{(4)} + B_{43}C_3^{(4)} + B_{4-3}C_{-3}^{(4)}$$
(2)

where B_{kq} are the CFP and $C_q^{(k)} = [4\pi/(2k+1)]^{1/2}Y_{kq}$ are the spherical operators expressed in terms of the spherical harmonics Y_{kq} . For a C_3 symmetry the B_{20} and B_{40} parameters are always real, whereas the B_{43} and B_{4-3} parameters are complex. For $\operatorname{Cr}_{\mathrm{Li}}^{3+}$ sites with the C_3 site symmetry in LiNbO₃:Cr_{Li}³⁺, we have [11] $|\operatorname{Im}(B_{43})|/|\operatorname{Re}(B_{43})| = tg \, 3\varphi \approx 0.18$, using $\varphi = 3^{\circ}49^{\circ}$ [12], where φ is the angle of rotation of the upper and lower oxygen triangles in the octahedron composed of six oxygen ions. In this case we approximately can neglect the imaginary part of B_{43} and take $|B_{43}| \approx |\operatorname{Re}(B_{43})| = |\operatorname{Re}(B_{4-3})|$, which justifies the assumption of nearly $C_{3\nu}$ symmetry for the octahedral Cr_{Li}^{3+} sites used below. The last term in the Hamiltonian (1) is the Zeeman term, and for the ${}^{4}A_{2}$ ground state of Cr^{3+} in trigonal symmetry is given as [13]

$$H_{z} = D\left(S_{z}^{2} - \frac{1}{3}S(S+1)\right) + \beta g_{II}H_{z}S_{z} + \beta g_{\perp}(H_{x}S_{x} + H_{y}S_{y})$$
(3)

with the symbols appearing in Eq.(3) having their usual meaning.

From a molecular orbital (MO) model for octahedral 3dⁿ cluster in crystals, the oneelectron basis functions can be expressed as [14-16]

$$\left|\gamma\right\rangle = N_{\gamma}^{1/2} \left(\left|d_{\gamma}\right\rangle - \lambda_{\gamma}\right| p_{\gamma}\right)$$

$$\tag{4}$$

where $\gamma = t_{2g}$, e_g denotes the irreducible representations of the O_h point group. $|d_{\gamma}\rangle$ and $|p_{\gamma}\rangle$ are, respectively, the d orbitals of the central 3dⁿ ion and the p orbitals of the ligands. The MO coefficients N_{γ} and λ_{γ} are the normalization factors and the orbital mixing coefficients, which can be determined from the approximate relations [14-16]

$$f_{\gamma} = N_{\gamma}^{2} \Big[1 + \lambda_{\gamma}^{2} S_{dp}(\gamma) - 2\lambda_{\gamma} S_{dp}(\gamma) \Big],$$
⁽⁵⁾

and the normalization conditions

$$N_{\gamma} \left[1 - 2\lambda_{\gamma} S_{dp}(\gamma) + \lambda_{\gamma}^{2} \right] = 1$$
(6)

where $S_{dp}(\gamma)$ are the group overlap integrals. The covalence parameter $f_{\gamma} \approx \frac{1}{2} \left[\frac{B}{B_0} + \frac{C}{C_0} \right]$ is expressed in term of ratios of the Racah parameters for a 3dⁿ ion in a crystal to those (having the "0" subscript) of a free ion.

According to the cluster approach [14-16], the SO coupling coefficients ξ , ξ' , the orbital reduction factors *k*, *k*' for the octahedral 3dⁿ clusters can be expressed as

$$\begin{aligned} \xi &= N_t \left(\xi_d^0 + \lambda_t^2 \xi_p^0 / 2 \right) \\ \xi' &= \left(N_t N_l \right)^{1/2} \left(\xi_d^0 - \lambda_t \lambda_l \xi_p^0 / 2 \right) \\ k &= N_t \left(1 + \lambda_t^2 / 2 \right) \\ k' &= \left(N_t N_l \right)^{1/2} \left(1 - \lambda_t \lambda_l / 2 \right) \end{aligned}$$

$$(7)$$

where ξ_d^0 and ξ_p^0 are the SO coupling coefficient of d electrons of a free 3dⁿ ion and that of p electrons of a free ligand ion, respectively. From the basis function and by use of the Macfarlane's perturbation – loop method [17, 18], the high-order perturbation formulas of EPR

parameters based on the two spin-orbit coupling parameter models for 3d³ ions in trigonal symmetry are as follows [14-16,19]

$$D = \frac{2}{9} \xi'^{2} v \left(\frac{1}{D_{1}^{2}} - \frac{1}{D_{3}^{2}} \right) - \sqrt{2} \xi \xi' v' \left(\frac{2}{3D_{1}D_{4}} + \frac{1}{D_{2}D_{3}} + \frac{1}{3D_{3}D_{4}} + \frac{1}{D_{2}D_{4}} + \frac{4\sqrt{2}B}{D_{1}D_{4}D_{5}} \right)$$

$$- \sqrt{2} \xi'^{2} B v' \left(\frac{4B}{D_{3}D_{4}D_{5}} + \frac{9B}{2D_{2}^{2}D_{3}} \right)$$

$$g_{\parallel} = g_{s} - \frac{8\xi' k'}{3D_{1}} - \frac{2\xi'}{9D_{1}^{2}} (2k'\xi - k\xi' + 2g_{s}\xi') + \frac{4\xi'^{2}}{9D_{3}^{2}} (k - 2g_{s}) - \frac{2\xi^{2}}{3D_{2}^{2}} (k + g_{s})$$

$$- \frac{4\xi\xi' k'}{3D_{1}D_{2}} + \frac{4\xi\xi' k'}{9D_{1}D_{3}} + \frac{4\xi\xi' k'}{3D_{2}D_{3}} + \frac{8\xi' k'}{9D_{1}^{2}} v - \frac{4\sqrt{2}}{3D_{1}D_{4}} (k'\xi + k\xi') v'$$

$$g_{\perp} = g_{\parallel} - \frac{4\xi' k'}{3D_{1}^{2}} v + \frac{4\sqrt{2}}{3D_{1}D_{4}} (2k\xi' + k'\xi) v'$$
(10)

$$\delta({}^{2}E) = -\frac{4\xi\nu}{3D_{7}} - \frac{16B\xi'\nu}{D_{7}D_{12}} + \frac{4B\nu\xi'}{D_{7}D_{13}} - \frac{16B\nu\xi'}{D_{10}D_{12}} + \frac{4B\nu\xi'}{D_{10}D_{13}} + \frac{8\sqrt{6}B\xi\nu'}{D_{7}D_{12}} - \frac{2\sqrt{6}B\xi\nu'}{D_{7}D_{13}} + \frac{8\sqrt{2}B\xi\nu'}{D_{8}D_{12}} - \frac{2\sqrt{2}B\xi\nu'}{D_{8}D_{13}}$$
(11)

where D_i (i=1-13) are the zero order energy denominators defined in [17,18]. v and v' are the trigonal field parameters and B and C are the Racah parameters, g_s (≈ 2.0023) is the g factor of a free 3d ion.

3. Results

3.1 Perturbation Theory

Now we apply the above formulas to estimate the *D*, *g* and $\delta({}^{2}E)$ values for Cr_{Li}³⁺ in LiNbO₃ crystals. The group overlap integral $S_{dp}(\gamma)$ can be calculated from the Slater – type SCF functions [20] and the impurity – ligand distance *R*. Since the masses, charges, and ionic radii of the impurity ion and replaced host ion are different, the mutual interaction between the impurity ion and surrounding O²⁻ ions in doped crystals must differ from that between the replaced ion and surrounding ions in host crystals. Also, the impurity-ligand distances *R* in the doped crystal would be unlike the host values *R_H* in the pure host. Usually, strictly theoretical determination of impurity-ligand distance in crystals may be difficult. However, the studies based on the experimental super-hyperfine constant, EXAFS measurements and crystal-field analysis have suggested that the empirical formula [21-23] $R \approx R_H + (r_i - r_h)/2$, where R_H is the metal – ligand

distance in the host matrix, r_i is the ionic radius for the impurity Cr^{3+} , and r_h is the radius of the replaced ion in host crystal, is approximately valid for impurity ions in crystals. For LiNbO₃:Cr_{Li}³⁺ we have [12] two different distances between Li ion and two triangles of oxygen ions: upper and lower triangles [11]. The distance between Li and upper oxygen triangle ions R_{HI} is 2.238 Å and the same distance for the lower oxygen triangle R_{H2} is 2.068 Å [24]. Also, r (Cr³⁺) = 0.63Å [25] and r (Li¹⁺) = 0.68Å [25], so that we have $R_I = 2.188$ Å, $R_2 = 2.018$ Å. From the Slater – type SCF wave function and the distances R, the group overlap integrals $S_{dp}(\gamma)$ for the considered system are calculated and shown above.

The Racah parameters *B*, *C*, the cubic field parameter Dq and the trigonal parameters *v* and *v*', obtained from optical spectra of the crystal under study [6] are given below: Dq = 1532 cm⁻¹, B = 550 cm⁻¹, C = 2910 cm⁻¹, v = -1400 cm⁻¹, v' = 700 cm⁻¹.

By using the free ion values $B_0 = 1030 \text{ cm}^{-1}$, $C_0 = 3850 \text{ cm}^{-1}$ [26] for Cr^{3+} , the covalence parameter is estimated to be $f_{\gamma} \approx 0.6449$. The MO coefficients N_{γ} and λ_{γ} are obtained from (5-6) and given in Table 1.

Table1.Group overlap integrals, MO coefficients, orbital reduction factors, SO coupling
coefficients (in cm $^{-1}$) for Cr_{Li}^{3+} :LiNbO3 crystal

$S_{dp}(e_g)$	$S_{dp}(t_{2g})$	N_t	N _e	λt	λe	k	k'	ξ	ξ'
0.0985	0.0336	0.8170	0.8476	0.5080	0.5337	0.9224	0.9449	255	210

From the free ion values ξ_d^0 (Cr³⁺) ≈ 273 cm⁻¹ [26] and ξ' (O²⁻) ≈ 151 cm⁻¹ [25], the parameters *k*, *k*', ξ , ξ' , are calculated from Eqs. (7); they are also shown in Table 2. Using the Eqs.(8)-(11) and the above-given results we obtain the EPR parameters (zero-field splitting D, g - factors g_{||}, g_⊥) and first excited state splitting of Cr_{Li}³⁺ doped in LiNbO₃. The obtained in these way EPR parameters are shown in Table 2.

3.2 Ab initio calculation of g factors

It is well known [27] that the EPR g-tensor is a property that can be calculated as a second derivative of the energy and it is implemented as such into ORCA [28] for the SCF methods such as Hartree - Fock (HF) and Differential Functional Theory (DFT). At the SCF level four contributions arise:

$$g_{\mu\nu}^{(SZ)} = \delta_{\mu\nu}g_{s}$$

$$g_{\mu\nu}^{(RMC)} = -\frac{\alpha^{2}}{S}\sum_{h,l}P_{hl}^{\alpha-\beta}\langle\Phi_{h}|\hat{T}|\Phi_{l}\rangle$$

$$g_{\mu\nu}^{(DSO)} = \frac{1}{2S}\sum_{h,l}P_{hl}^{\alpha-\beta}\langle\Phi_{k}|\sum_{A}\xi(r_{A})[r_{A}r_{O}-r_{A,\mu}r_{O,\nu}]|\Phi_{l}\rangle$$

$$g_{\mu\nu}^{(PSO)} = \sum_{h,l}\frac{\partial P_{kl}^{\alpha-\beta}}{\partial B_{\mu}}\langle\Phi_{k}|h_{\nu}^{SOC}|\Phi_{h}\rangle$$
(12)

Here, g_e is the free –electron g_s -value (=2.002319..),S is the total spin, α is the fine structure constant, $P^{\alpha-\beta}$ is the spin density matrix, { Φ } is the basis set , \hat{T} is the kinetic energy operator, $\xi(r_A)$ an approximate radial operator, h^{SOC} the spatial part of an effective one-electron spin-orbit operator and B_{μ} is a component of the magnetic field. The derivative of the spin-density matrix is calculated from coupled –perturbed SCF theory with respect to a magnetic field perturbation (orbital Zeeman term). Our calculation utilizes the Ahlrichs - VDZ basis [29] and the Ahlrichs auxiliary basis sets obtained from the TurboMole [30, 31]. The results, obtained with ORCA 2.8 computer program are also, given in Table 2.

Table 2. EPR parameters (zero-field splitting D, g - factors g_{\parallel} , $g \perp \Delta g$ and $\partial ({}^{2}E)$) of $\operatorname{Cr}_{\mathrm{Li}}^{3+}$ doped LiNbO₃ crystal

	$D(\mathrm{cm}^{-1})$	8	g⊥	Δg	g	$\delta(^2E)(\mathrm{cm}^{-1})$
Calculated a	- 0.356	1.9687	1.9721	- 0.003450	1.970	59.53
Calculated b	- 0.388	1.9644	1.9686	- 0.004048	1.967	64.96
Calculated c	-	1.9887	1.9644	-0.024347	1.972	-

a- calculated by taking into account the spin- orbit for interaction of chromium ion and neglecting the spin-orbit interaction for ligands. It was done by using the above given equations with dropping the ligand' spin-orbit interaction.

b- calculated by taking into account the spin-orbit interactions for both chromium ion and ligands;

c- calculated by using DF method implemented in ORCA computer program.

Comparison these results with the experimental ones, |D| = 0.393 and g = 1.957 [32] and D = 0.396 and g = 1.969, [33] shows satisfactory agreement between the experimental values and theoretical calculations including the spin-orbit interaction for both chromium ion and

oxygen ligands in Cr_{Li}^{3+} :LiNbO₃, and DFT method. The negative sign in front of the zero-field splitting *D* means that trigonal deformation of the oxygen ions around chromium impurity is a contraction of the octahedron along the C₃ axis.

4. Conclusions

In the present work we reported on the detailed calculations of the spin Hamiltonian parameters for $\operatorname{Cr}_{Li}^{3+}$ in LiNbO₃. In addition, we have applied the two spin-orbit coupling model (the admixture of the spin-orbit coupling parameters between the d electrons of the central 3dⁿ ion and the p electrons of the ligands), via the covalence effects, to calculate the EPR parameters *D*, g_{\parallel} , g_{\perp} , and first excited state splitting of $\operatorname{Cr}_{Li}^{3+}$ doped in LiNbO₃. From the above calculations, it was demonstrated that this model gives satisfactory agreement with experimental data. The two-spin-orbit coupling coefficient formulas are more accurate than the conventional single-spin-orbit coupling coefficient formulas in theoretical studies of the EPR parameters. The small shift of g and quasi-isotropic g factors reveal the quasi-octahedral symmetry of the Cr³⁺ center in the title crystal. The EPR experimental data, are satisfactory explain using two-spin model of spin-orbit coupling.

DFT based calculations of g-factors, using ORCA computer program, gave the results according that from perturbation theory and close to experimental data.

References

- 1. D. J. Rexford, Y. M. Kim, H. S. Story, J. Chem. Phys., 52, 860 (1970).
- 2. G. Malovichko, V. Grachev, E. Kokanian, O. Schirmer, Phys. Rev. B 59, 9113 (1999).
- 3. T. H. Yeom, Y. M. Chang, C. Rudowicz, S. H. Choh, Solid State Comm. 87, 245 (1993).
- 4. Y. M. Chang, T. H. Yeom, Y. Yung, C. Rudowicz, J. Phys.: Cond. Matter 5, 6221 (1993).
- 5. A. Kaminska, J. E. Dmochowski, A. Suchocki, J. Garcia-Sole, F. Jaque, L. Asizmendi, Phys. Rev. B **60**, 7707 (1999).
- 6. W. Jia, H. Liu, R. Knutson, W. M. Yen, Phys. Rev., **B41**,10906 (1990).
- 7. V. Grachev and G. Malovichko, Phys. Rev. B 62, 7779 (2000).
- G. Malovichko, V. Grachev, A. Hofstaetter, E. Kokanian, A. Scharmann and O. Schirmer, Phys. Rev. B 65, 224116 (2002).
- 9. N. M. Avram, C. N. Avram, M.G. Brik, AIP Conference Proceedings 899, 676 (2007).

- 10. J. Mulak, Z. Gajek, The Effective Crystal Field Potential (Elsevier, Amsterdam, 2000).
- 11. Z.-Y. Yang, C. Rudowicz, J. Qin, Physica B 318, 188 (2002).
- 12. S. C. Abrahams, P.Marsh, Acta Crystallogr., Sect.B: Struct.Sci..42(1), 61 (1986).
- A. G. Abragam, B. Bleaney, *Electron Paramagnetic Resonance of Transition Ions* (Oxford University Press, London, 1970).
- 14. M. L. Du and M. G. Zhao, Phys. Stat. Solidi B 153, 249 (1989).
- 15. M. L. Du, Phys. Rev. B 46, 5274 (1992).
- 16. M. L. Du, C. Rudowicz, Phys. Rev. B 46, 8974 (1992).
- 17. R. M. Macfarlane, J. Chem. Phys. 47, 2066 (1967).
- 18. R. M. Macfarlane, Phys. Rev. B 1, 989 (1970).
- 19. W. C. Zheng and Y. Wu, Spectrochim. Acta A 58, 79 (2002).
- 20. E. Clementi, C. Roetti, Atomic Data and Nuclear Data Tables 14 177 (1974).
- 21. M. Moreno, M. T. Barriuso, J. A. Aramburu, Appl. Magn. Reson. 3, 283 (1992).
- 22. W. C. Zheng, Physica B 215, 255 (1995).
- 23. H. N. Dong, S. W. Wu, Z. Naturforsch. A 58, 507 (2003).
- 24. S. C. Abrahams, J. M. Reddy, J. L. Bernstein, J. Phys. Chem. Solids 27, 997 (1966).
- 25. R. C. West, *CRC Handbook of Chemistry and Physics* (CRC Press, Boca Raton, Florida, 1989) p. 187.
- 26. J. S. Griffith, *The Theory of Transition-Metal Ions* (Cambridge University Press, London, 1964).
- 27. F. Neese, Int. J. Quant.Chem., 83, 104 (2001).
- ORCA An *Ab initio*, DFT and semiempirical SCF-MO package, Version 2.8-00, September, 2010.
- 29. A. Schaefer, H. Horn, R. Ahlrichs, J. Chem. Phys. 97, 2571 (1992).
- K. Eichkorn, O. Treutler, H. Ohm, M. Haser and R. Ahlrichs ,Chem. Phys. Letters 240, 283 (1995).
- 31. K. Eichkorn, F. Weigend, O. Treutler, R. Ahlrichs, Theor. Chem. Acc. 97, 119 (1997).
- 32. T. H. Yeom, Y. M. Chang, C. Rudowicz, S.H. Choh, Solid State Comm. 87, 245 (1993).
- 33. V.G. Gracev, G.I. Malovichko, Sov. Phys. Solid State 27, 424 (1985).