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It is introduced a new nonlinear anelastic model in order to describe 

relaxation phenomena in polycrystalline solids. The model is studied with 

the aid of He‘s variational iteration method and compared with the 

numeric solution. In order to identify the parameters of the model it is 

proposed a method based on the wavelet multiresolution analysis. 

 

 

 

1. Introduction 

The knowledge of the dynamic properties of materials and structures is very important in 

the theoretical dynamics, in the experimental investigation and a series of applications to the 

mechanical systems.  

The aim of this paper is to introduce a nonlinear rheological model adequate to describe 

phenomena of relaxation facilitated by vibration, which is experimentally known in steel 

structures. Previous investigations are published in [1,2]. Our model is a generalization of 

standard anelastic model. In our model we used the assumption that in the case of polycrystalline 

materials the speed of relaxation (~1/0) is not constant. In our case the speed of relaxation 

depends in a linear way on the stress ζ(t) applied on the grain boundaries. Results that 1/0 was 

replaced by )(
11

0




 . 

We consider that to the system is applied a stress ζ(t), and the strain response will be ε(t). 

The relation between the stress and the strain is expressed by the constitutive equation: 
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where  is a relaxation parameter,  is a small parameter,   is a parameter around of unity,  Er 

and Er +E are relaxed and not relaxed longitudinal elastic modulus. 

The excitation strain )(t  consists in a constant term 0  applied and a harmonic 

excitation: 

))cos()(()( 0 tAtut                                                      (2) 

where )(tu  is the Heavyside function, A the amplitude of the strain and  the angular frequency. 

The stress response of this model is investigated in analytical way with the aid of He‘s 

variational iteration method, and compared with the numerical solution. 

 Finally, it is proposed a parameter identification procedure, based on wavelet 

multiresolution analysis method.  

 

2. Problem Formulation 

Following we will study the model described by the equation (1), using the function 

 rEx = . This equation may be written as: 

,)(=)(
2 









EEXxEx

dt

dx
rr                                        (1‘) 

For this case, to describe the relaxation processes facilitated by external applied 

vibrations, we will consider the excitation represented by the normal specific strain )(t  given by 

the function (2). 

Initial condition is for this case: .=(0) 0Ex  

Solving this kind of equation is quite difficult. To realise this we will use a variational 

iteration method [3]. 

The method can be applied to equation in the following form: 

 ),(=)()( tgtNxtLx                                                           (3) 

where L  denotes a linear operator, N  denotes a non-linear operator, and )(tg  is a known given 

function. 
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The variational iteration method is e method based on Lagrange multipliers, which offers 

the possibility to writte the solution using a correction functional as: 

 ,))()()()(()(=)(
0

1  dgxNLxtxtx nn

t

nn                                 (4) 

 where )(txn  is an initial aproximation possibly containg unknowns, and )(t  is a Lagrange 

multiplier, and nx  is contained in a term which is imposed a restrained variation 0=)(txn . The 

Lagrange multiplier may be determined from the stationarity condition of the correction 

functional: 

0.=)(1 txn  

To solve the equation (1) we will take: 

       ),(=,/=
2

00  rExNxxdtdxLx   ,)(=  EEg r   

and we will use the following notations: 

  /=,/=  

 Requiring the minimize condition for the correction functional, it results: 

 0,=)()(     0.=|)]([1 0=  

 Using these conditions, we can establish the Lagrange multiplier: 

)]([exp=)( t    

  

 We will use as first aproximation of the solution: 

 
  

,
sin)(cos

=)(
2200
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 ttAE
ectx

t
                               (5) 

 

which represents the solution of the linear part of equation, where 0c  is an integration constant. 

We must underline that the method has a extremely powerfull convergence.After computing we 

will find first iteration of the solution: 

  









2201
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=)(
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Actually, the calculus corresponding to find the first iteration are done in Maple. 

 

From this first iteration we observe that the solution is containing besides the relaxation 

components like )/(exp=)(exp 0tt    also some componens like 

)/2(exp=)2(exp 0tt   . We observe the appearance of harmonic and damped harmonic 

terms with pulse   and 2 . For the next iteration we made the calculus, but the expression for 

)(2 tx  is extremely elaborate so is not showed here. Is significant to tell that the expression 

contains exponentially relaxation components like )/3(exp=)3(exp 0tt   . 

Results the conclusion that even this model is not appropriate, applying external vibration 

the relaxing process is hurried. 

Also we will study the model described by the equation (1) obtaining the numerical 

solution based on Runge-Kutta method. 
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For this case also, to describe the relaxation processes facilitated by external applied 

vibrations, we will consider the excitation represented by the normal specific strain )(t  given by 

the function (2). We will use also the initial condition: 

 .=(0) 0Ex  

 We will use the following values of the parameters: 

,/2000=,/2000=
22

mmNEmmNEr   1.=0.02,=,10= 00  s  

The working solution of the probleme is done in MathCAD. 

The time interval on which is searched the solution was ][0,Tf  , where sT 20= , the 

solution being sampled in 301=n  points with a sample rate 1)/(=  nTt . 

The following cases was studied: 

I. The case of liniar model with 0= , situation a) of the free response, without 

vibrations 0=A  and b) response facilitated by vibrations having /8= 0A , and frequency 

Hz2.4= . The plot )(t  is represented in Fig. 1 in black for 0=A  and in red for /8= 0A . 

II. The case of non-linear model with 0.03= , situation a) of free response, without 

vibrations 0=A  and b) response facilitated by vibrations with /8= 0A , and frequency 

Hz2.4= . The plot )(t  is represented in Fig. 2 in black for 0=A  and in red for /8= 0A . 

 

Figure 1. The stress relaxation for linear model for 0=A  and /8= 0A . 
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Figure 2. The stress relaxation for nonlinear model for 0=A  and /8= 0A  

 

The parameters of this model can be identified from experimental data using wavelet 

multiresolution series expansion [4]. A signal x(t) can be expanded as: 

......)( 1100  nntx  ,                               (7) 

where )(t  is a mother wavelet function, )(t  is the corresponding scale function  and:      
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 .                   (8) 

The equation (1‘) can be written in the formal form: 
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of type [A][X]=[B] where A is a (n4) matrix, B is a (41) matrix and is a (n1) matrix. The 

parameters a, b, c, d of this over-determined equation can be written as: 

      ][)(][
1

BAAAX
tt 

  

where ―t‖ represents the transpose matrix and ―-1‖ the corresponding inverse. 

 

Conclusions 

From fig. 1 we observe that in the case of linear model the relaxation process in the 

presence of vibrations is perfectly superposed to the free process. Results that applying vibrations 

does not increase the speed of relaxation process. 

From fig. 2 we observe that in the case of non-linear model the relaxation process in the 

presence of vibrations does not fit the free case, the non-oscillatory component of the curve 

falling faster than the free response. Results that applying vibrations speeds-up the relaxation 

process in the case of non-linear model. 
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