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This paper presents a pattern recognition analysis over a database of GC-

FTIR spectra of pure amphetamines (3745-605cm
-1

). The analyzed spectra 

are organized in three classes: stimulant amphetamines (15 spectra), 

hallucinogenic amphetamines (7 spectra) and non-amphetamines (135 

spectra).  

The correlation process is based on amplitude sine modulated fringe-

adjusted phase-input joint transform correlation method (FA-sinePiJTC). 

In this method, the correlation is done between a pair of phase-transformed 

amphetamines spectra. The proposed phase-input algorithm consists of 

two steps: the amplitude sine modulation step and the adaptive filtering 

step. 

The results show that all the correlations coefficients corresponding to the 

157×157 correlation matrix are above the detection efficiency coefficient 

threshold value of 1,2000. In conclusion, the pattern recognition method 

based on modified phase-input Fourier correlation is adequate for the 

discrimination of the GC- FTIR spectra of amphetamines. 

 

 

1. Introduction 

 Pattern recognition is an imposed step in the classification of chemical compounds, based 

on their spectral behaviour. Worldwide, the amphetamines are monitored by the security agencies 

due to the important number of analogues that are used as drugs of abuse (e.g. hallucinogens). On 

the other hand, some amphetamine analogues with stimulant biological effect are used in legal 

medical applications. As a result, their discrimination from non-amphetamine molecular 

structures or classification (stimulant amphetamines vs. hallucinogenic amphetamines) is 

somehow critical, especially if it can be done automatically. One way to obtain their 

classification is to build up a GC-FTIR spectral database and then to design a pattern recognition 

algorithm that can distinguish the class identity of an unknown molecular structure. 
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 The forensic practice requires the positive identification of an illicit amphetamine based 

on both its GC-MS and GC-FTIR spectrum. The challenge in achieving the automated 

recognition of the class identity of these compounds is the fact that the different amphetamine 

analogues have very similar molecular structures and thus their spectra are very similar as well. 

This is especially true for the GC-MS spectra, fact that generates the failure of the pattern 

recognition process at the levels of sensitivity and selectivity required by the forensic practice. 

The GC-FTIR spectra are more sensitive to small changes in the molecular structure, and thus 

have been selected for this study. 

Amplitude fringe-adjusted joint transform correlator [1, 2], FA-AJTC, is a well known 

pattern recognition tool. However, a preliminary study has shown that, despite the advantage of 

noise robustness, it is not powerful enough to discriminate the amphetamines spectra. This is the 

reason why we have analysed the results obtained with the sine modulated phase-input joint 

transform correlator (FA-sinePiJTC) in the pattern recognition process designed to identify the 

class identity of the amphetamines based on their GC-FTIR spectra. For a better understanding of 

the benefits of FA-sinePiJTC, we are presenting in the following sections the transitions from the 

FA-AJTC to the proposed one. 

 

 2. Method and samples  

  2. 1. Fringe adjusted amplitude joint transform correlator (FA-AJTC) 

 Let us assume that we have a scene-function )( 0xxscn   and a reference-function 

)( 0xxref   as the input function, separated by a distance of 02x  along the x-axis. Thus we obtain 

a joint image function  

)()()( 00 xxscnxxrefxjnt  . 

The Fourier transform of expression (1), given by [1-3] 

)exp()()exp()()( 00 iuxuScniuxuRefuJnt  , 

where )(uJnt , )(uRef  and )(uScn are the Fourier transforms of )(xjnt , )(xref  and )(xscn , 

respectively, and xu  2   is the coordinate in the Fourier space. The joint power spectrum in 

the Fourier space is given by [1, 2] 

)2exp()()()2exp()()()()()( 0

*

0

*
xiuuREFuSCNxiuuSCNuREFuSPSuRPSuJPS  . (3) 

(1) 

(2) 

(1) 
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Then the joint power spectrum, from Fourier space, is inverse transformed to obtain the 

correlation information as the output function, which is given by  

210

00

                   

)2()()2()()]()( )()([)(

TTT

xxrefxscnxxscnxrefxscnxscnxrefxrefxCorr




 

where the  symbol denotes the correlation operation. The 
0T  term, in expression (4), denotes the 

zero-order term, which consists of autocorrelation peaks for the reference and the input functions, 

located in the centre of the output function. The 
1T  and 

2T  terms represent the two correlation 

peaks that are the useful signals for the recognition information. 

 One major problem of the correlator is that after the correlation process is performed a 

very high term occurs in the output function, the dc term. The dc term has to be removed in order 

to enable the examination of the correlation useful peaks. One way is done in the first Fourier 

space, where the non-zero order power spectrum is obtained by [1, 2] 

)()()()( uRPSuSPSuJPSuJnzPS  . 

Furthermore to improve the pattern discriminability of the correlation process the cross-

correlation peaks must be reduced and the autocorrelation peaks increased. This adjusting can be 

done by applying an amplitude-modulated filter )(uFlt  to the non-zero order joint power 

spectrum. The amplitude adjusting filter is defined by [1, 2] 

 
    

      












uREFuZuREF

uREFuREF
uFlt

,1

,1
, 

where   is the lowest real positive value that the computer recognizes, and  uZ  is a real non-

zero function. In the first Fourier space the fringe-adjusted function is 

     uJnzPSuFltuH  . 

Finally, in order to obtain the correlation peaks, this function will be Fourier transformed. The 

fringe-adjusted amplitude joint transform correlator (FA-AJTC) is the correlator that provides 

this kind of correlation process, equations (5) to (7). 

 

2. 2. Fringe-adjusted phase-input joint transform correlator (FA-PiJTC) 

 This correlator model is the same as the amplitude one, but it uses the phase 

transformation method on the joint input image. This method assumes that the input amplitude 

function, )(xAmpFunc , is somehow transformed from amplitude coding in phase coding 

(4) 

(6) 

(7) 

(5) 
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(usually dfPSLM  and  2dfPSLM ), using a transformation function ][Tf  to obtain a 

phase-input function )(xPhaseFunc , that mathematically is described by [3-9] 

   



















 dfPSLM

MinMax

MinxAmpFunc
ixAmpFuncTfixPhaseFunc

)(
exp)(exp)( , 

where dfPSLM  is the phase depth, Max , Min , are the maximum and the minimum values of the 

amplitude input function. After the phase transformation of reference, scene and joint images, the 

entire process works identically like in the FA-AJTC. 

 

2. 3.  Sine modulated fringe-adjusted phase-input joint transform correlator (FA-

sinePiJTC) 

 The phase-input joint transform correlator FA-PiJTC is reported to be noise sensitive. In 

certain conditions a better pattern discriminability and better detection efficiency is needed. The 

detection efficiency can be improved if the dc term (which is the zero order term) of the power 

spectrum will drop and the high spatial frequencies will increase. 

 The high spatial frequencies are connected to the function‘s details in spatial coordinates. 

If the three power spectrum will have a thin dc term and large high spatial frequencies, the 

correlation process, which ―compares‖ the reference function with the scene objects, will provide 

a better pattern discrimination because the objects will be ―compared‖ more in their details. 

 To achieve this goal the authors propose an alternate correlator, which consists in 

applying a sine function before the first Fourier transform is performed: 

.
)(

sinexp)( 1 




































 dfPSLMfPREdfPRE

MinMax

MinxAmpFunc
ixPhaseFunc  

where 
12 fPREfPREdfPRE   is the amplitude sine modulation domain. The amplitude sine 

modulation function reshapes the input functions such as the minor details differences becomes 

larger differences. Thus are generate large high frequencies and pattern recognition efficiency. 

 After this proposed phase transformation of the input function, the previous algorithm can 

be performed. The sine modulated fringe-adjusted phase-input joint transform correlator (FA-

sinePiJTC) is the correlator that provides this kind of correlation process, equations (5) to (7) and 

equation (9). 

 

 

(8) 

(9) 
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3. Results and Discussions 

 The database that was used as input for the pattern recognition process consists of 157 

GC-FTIR spectra recorded in the 3745-605 cm
-1

 spectral domain. The spectra are organized in 

three classes: stimulant amphetamines, hallucinogenic amphetamines and non-amphetamines. 

Despite the presence of the three amphetamines classes, the authors considered just one class of 

amphetamines, regardless of their biological activity. The resulting data will provide the pattern 

recognition parameters which are needed for any further, more refined, automated classification 

tools. 

 The pattern recognition process was done with the FA-sinePiJTC. The result was a 

157×157 correlation matrix with the detection efficiency coefficient values.  

 The correlation performances criteria that can be used to analyse the described joint 

transform correlators need the definition of the cross-correlation peak intensity, CPI, and of the 

auto-correlation peak intensity, API. The ratio, CPIAPIDEC  , denotes the detection efficiency 

coefficient. It prescribes a pattern recognition failure for values less than the recommended 

threshold value of 1,2000. Values greater than the threshold conclude in a successful pattern 

recognition process. 

 The used parameters with FA-sinePiJTC were  02  dfPSLM  and 

     5.03 dfPRE . Correlation results from pattern recognition process made with objects 

from a database are summarized by the minimum value of the detection efficiency coefficient, 

DECmin.  
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Figure 1. Fourier correlation results for the three amphetamines classes. 
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The minimum DEC value for a pattern recognition process for one reference object over the rest 

is characterized by the ―worst‖ correlation result. Figure 1 shows the graphical representations of 

the pattern recognition results with the FA-sinePiJTC for the three analysed classes. The DECmin 

values are represented for each GC-FTIR amphetamine spectrum over the rest. The dash dotted 

line represents the detection efficiency coefficient threshold value. 

 First, the FA-sinePiJTC generates the amplitude sine modulated input function (i.e. the spectra 

of amphetamines). This procedure increases the differences between the discriminated spectra 

involved in the correlation process. A second data processing step yields the fringe-adjusted 

power spectrum, which has the effect of reference adaptive filtering. In this way, the 

discriminability between the amphetamines spectra increases in comparison with the other two 

joint transform correlators.  

 The final correlation results, represented by the DECmin values, are compared with the 

threshold value of the correlation coefficient, that was set at 1,2000. Table 1 presents the overall 

DECmin values that were obtained for the studied classes of amphetamines. The non 

amphetamines class generates the lowest DECmin value for the N10 and N122 indexed pair.  

 

Table 1.  Minimum values of detection efficiency coefficient for the studied three 

amphetamines classes. 

Amphetamines Class DECminim 

Stimulant  3.4723 

Halucinogen 1.6299 

Non-Amphetamines 1.2385 

 

 This means that these two GC-FTIR spectra of non-amphetamines are very similar (the 

Pearson correlation coefficient is 0.9857 or the equivalent DEC = 1.0145). Despite this situation, 

the FA-sinePiJTC can discriminate N10 and N122 with a DEC ―gap‖ value of 0.0385 (3.208%) 

above the DEC threshold value. 

 

Conclusions 

 In this paper we have presented the classification results obtained with the sine modulated 

fringe-adjusted phase-input joint transform correlator, FA-sinePiJTC, and its benefits in pattern 

recognition of pure amphetamines, based on the processing of their GC-FTIR spectra.  
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 The above results reach the conclusion that the presented pattern recognition method 

based on the sine modulated fringe-adjusted phase-input joint transform correlator, FA-

sinePiJTC, is adequate for assigning the class identity of amphetamines based on their GC-FTIR 

spectra. Furthermore, the DEC ―gap‖ between threshold value and DECmin is large enough to 

consider this method recommendable for both the registration and classification tasks required for 

the automated recognition of GC-FTIR spectra of pure amphetamines.  
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