THE EPR SPECTRA FOR COOPER IONS IN MIXED ALKALI CADMIUM PHOSPHATE GLASSES

M. G. Ciresan, C. N. Avram

Department of Physics, West University of Timisoara, Bd. V. Parvan 4, Timisoara 300223, Romania

Article Info	Abstract
Received: 30 December 2010	The aim of the present investigation is to study, from theoretical point of
Accepted: 15 January 2011	view, the nature of the site symmetry of Cu^{2+} in lithium-sodium mixed
	alkali cadmium phosphate glasses (hereafter referred to as LiNaCdP) from
Keywords:	the nature and splitting of EPR and optical bands as a function of mixed-
Glasses,	alkali effect MAE. The host glass is xLi ₂ O + (20-x)Na ₂ O + 20CdO +
Electron Paramagnetic Resonance	$59.5P_2O_5 + 0.5CuO$, with x = 10. The electron paramagnetic resonance
(EPR),	spectra for Cu ²⁺ doped mixed alkali cadmium phosphate (LiNaCdP)
optical properties,	glasses are calculated from perturbation theory method (PTM), to
transition metal.	understand the nature and symmetry of dopant. The results obtained for
	spin Hamiltonian parameters ($g_{\parallel},g_{\perp})$ indicate that the cooper ion enters

in the glass matrix into a tetragonal elongated octahedral site.

1. Introduction

Mixed-alkali in glasses has attracted much attention, due to it's technological and theoretical interests in describing the physics and chemistry of glasses [1]. Transition metal oxide containing phosphate glasses exhibit in semi-conducting nature and the electrical conduction is observed due to the hopping of electrons [2]. So, these glasses have attracted a great deal of attention because of their potential applications in the development of new tunable solid-state lasers, solar-energy converters, and fiber-optic communication devices [2]. Transition metal ions are used to probe the glass structure, because their responses to surrounding actions are very sensitive [3].

In this paper we have been investigated, from theoretical point of view, the nature of the site symmetry of Cu^{2+} in lithium-sodium mixed alkali cadmium phosphate glasses (hereafter referred to as LiNaCdP) from the nature and splitting of EPR and optical bands as a function of mixed-alkali effect MAE. The host glass is $xLi_2O + (20-x)Na_2O + 20CdO + 59.5P_2O_5 + 0.5CuO$, with x = 10 [4]. So, we calculate the g factors for Cu²⁺:LiNaCdP.

2. Method of calculation

Cu²⁺ replace Cd²⁺ in the LiNaCdP glasses. The free ion term for Cu²⁺ (d⁹) is ²D. In an octahedral crystal field, it splits into ²E_g and ²T_{2g} with the former being the ground state. ²E_g generally splits due to Jahn Teller distortion to ²B_{1g} and ²A_{1g} and the ²T_{2g} level to ²B_{2g} and ²E_g. The energy difference between ²A_{1g} and ²B_{2g} depends on the degree of distortion [4].

Figure 1. Splitting of the term ${}^{2}D$.

The strongest bands correspond to the transition ${}^{2}B_{1g} - {}^{2}B_{2g}$ at 11425 cm⁻¹ and the other band correspond to the transition ${}^{2}B_{1g} - {}^{2}E_{g}$ at 12045 cm⁻¹. For d⁹ ions in the tetragonal symmetry with the ground states, according to the crystal-field theory [5, 6, 7], the three optical band positions concerning the d-d transitions are given as:

$$E_{1} = E(^{2}B_{1}) - E(^{2}A_{1}) = 4Ds + 5Dt$$

$$E_{2} = E(^{2}B_{1}) - E(^{2}B_{2}) = 10Dq$$

$$E_{3} = E(^{2}B_{1}) - E(^{2}E_{2}) = 10Dq - 3Ds + 5Dt$$
(1)

The third-order perturbation formulas of g factors for d^9 ions in tetragonally elongated octahedral clusters are derived by the perturbation theory as:

$$g_{\parallel} = g_e + \frac{8k\zeta}{E_2} - \frac{4k\zeta^2}{E_2E_3} - \frac{(k+g_e)\zeta^2}{E_3^2},$$
 (2)

$$g_{\perp} = g_e + \frac{2k\zeta}{E_3} + \frac{(k - g_e/2)\zeta^2}{E_3^2} - \frac{2g_e\zeta^2}{E_2^2},$$
(3)

where k is the orbital reduction factor, in our case k = 0.94, g_e is the free-spin g value of 2.0023, $\zeta_0 = 829$ cm⁻¹ are the value of ζ in free state. E₂ and E₃ are the energy intervals given in Eqs. (1).

$$\zeta \approx k \cdot \zeta_0 \tag{4}$$

In table 1 are shown the values of g factors for Cu^{2+} doped in LiNaCdP.

Table 1. g factors values of Cu^{2+} doped LiNaCdP glass, calculated by PTM.

C C						
		g_{\parallel} (calc.)	$g_{\parallel}(\exp)$ [4]	g_{\perp} (calc.)	g_{\perp} (exp.) [4]	
LINACOP	2.486	2.441	2.102	2.088		

The covalency parameter for the in plane σ bonding is evaluated from the expression [4]:

$$\alpha^{2} = \frac{A_{\parallel}}{0.036} + (g_{\parallel} - g_{e}) + \frac{3}{7}(g_{\perp} - g_{e}) + 0.004$$
(5)

where $A_{\parallel} = 0.0121$ cm⁻¹ [4]. Using eqs. (4), we obtain for covalency parameter the value $\alpha^2 = 0.8668$.

3. Conclusion

Cu²⁺ ions take position in place of Cd²⁺ ions in the glasses. It can be seen from the Table 1, that results obtained by PTM are in good agreement with observed values [4]. Thus the EPR spectra of Cu²⁺ in LiNaCdP are explained theoretically. As $g_{\parallel} > g_{\perp} > g_e$ the ground state of the unpaired electron is ²B_{1g}. This observation also suggests that Cu²⁺ ions are subjected to tetragonally elongated distortion. The covalence degree of the in-plane Cu-O- σ bonds (α 2) in LiNaCdP glasses indicates partially covalent.

References

- 1. G. Giridhar, M. Rangacharyulu, R. V. S. S. N. Ravikumar, P. Sambasiva Rao, *Optoelectronics* and Advanced Materials-Rapid Communications Vol. 2, No. 7, 2008.
- 2. G. Giridhar, M. Rangacharyulu, R. V. S. S. N. Ravikumar, P. Sambasiva Rao, *Bulletin of Pure and Applied Sciences*. Vol. 27C, No.1, 2008.
- 3. Gan Fuxi, Deng He and Liu Huiming, Journal of Non-Crystalline Solids 52, 1982.
- G. Giridhar, M. Rangacharyulu, R. V. S. S. N. Ravikumar, P. Sambasiva Rao, J. Mater. Sci. Technol., Vol. 25, No. 4, 2009.
- 5. A. S. Chakravarty, Intr. to the Mag. Prop. of Solids, John Wiley& Sons, Inc., New York, 1980.
- A. Abragram, B. Bleaney, Electron Paramagnetic Resonance of Transition Ions, Oxford University Press, London, 1970.
- 7. J. S. Griffith, The Theory of Transition-Metal Ions, Cambridge Univ. Press, London, 1964.