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An analysis of the electron and phonon spectra in a metallic nanorod is 

discussed. It is found that the phonon energy gap can shift the critical 

temperature of the system. It is also shown that an autoreduction effect 

occurs as a consequence of the fact that the momentum space has a smaller 

number of degrees of freedom than the configurational space. 

 

 

1. Introduction 

 Nanorods are structures with rectangular cross section of nanodimension and macroscopic 

length. Nanodimensions in two directions require the introduction of boundary conditions, which 

noticeably change the physical characteristics of the system compared to those corresponding to 

the bulk structure. These changes are antiproportional to the thickness of the structures. The 

mentioned effect is expectable on the basis of the Heisenberg uncertainty relations, which are a 

fundamental quantum mechanical principle. In this work we are going to present an analysis of 

the dependence of the physical characteristics on the boundary conditions. A special attention 

will be given to the electron subsystem of the quantum rod. Some consequences of the phonon 

excitations will be also discussed.  

The existence of the phonons in the nanorod is essential for a proper determination of the 

superconductive properties
1 

of the system. In the papers
2, 3

 it was shown that the phonon 

excitations require an energy larger than the zero activation energy. This energy gap (expressed 

here in temperature units) shows that the temperature  
B

act
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E
T   plays the role of the absolute 
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zero for the resistance of the metallic nanoconductors, i.e. 
















gT

t
RR

16.273
10 . Besides this 

shift in the zero activation energy caused by nanodimensions, virtual exchange of phonons (BCS 

theory) and extreme transitivity (Abrikosov's idea) 
4
 can also occur, all these effects contributing 

to a possible increasing of the critical temperature of the system. The last two effects are also 

present in bulk structures.  

 

2. Electron subsystem of nanorod 

We shall investigate nanorods whose numbers of layers are denoted with integers 

 xx Nn ,0 ,  yy Nn ,0  and 









2
,

2

zz
z

NN
n , where xn  and yn  are of the order 10  while 

zn  is of the order 8
10 . We shall apply the Green's function method. As it is well known, this is 

the unique method which allows a systematic determination of the dynamic and thermodynamic 

characteristics of the system. Here we will use the Hubbard model of the electronic Hamiltonian
5
. 

We will use the approximation of the nearest neighbors and we shall assume that the nanorod has 

a simple cubic structure. In this case, the Hamiltonian in the Hubbard model can be written as 

follows: 
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where 
A  and A  are Fermi creation and annihilation operators for the electrons and   

,,,1;,,, WWW
zyxzyxx nnnnnnann  


 

,,1,;,,, WWW
zyxzyxy nnnnnnann  


 

WWW
zyxzyxz
nnnnnnann   1,,;,,,


        

(2) 

Since the Hamiltonian (1) is composed from fermionic operators, we shall use the 

anticommutator Green's function: 
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where  t  is Heaviside step function.  

We start with the basic observation that the translational symmetry of nanorod is broken 

in x and y direction. These boundary conditions have to be specified in these directions. Our 

boundary conditions are based on the simple fact that there is no interaction with the absent 

layers, and thus: 

,0,,1;,,,,1;,,0   zyxzyxzyzy mmNnnNmmnn WW

0,1,;,,,1,;,0,  
zyxzyxzxzx
mNmnNnmmnn WW

        

(4) 

Due to the disturbed symmetry in x and y directions, the equation for the Green's function 

(3) leads to a system of nine differential equations. The resulting expressions are quite long and 

we will not write them explicitly here
5
. In order to indicate the construction of these nine 

equations, we will give a graphical scheme. It represents the cross section of nanorod, which is 

shown in fig. 1. 

A(0,0) B (Nx,0)

CD (Nx,ny)(0,Ny)

nx

ny

 

Figure 1. The scheme for the construction of the equations that define the Green's functions of the rod. 

  

According to this scheme, all points inside of rectangle ABCD determine the complete 

equation for the Green's function. This equation has the following form:  

   
zyxzyxzyxzyxzyxzyxzyxzyx
mmmnnnmmmnnnmmmnnnmmmnnn GGWGGW ,,;,1,,,;,1,,,;,,1,,;,,1  
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Note that along the sides of rectangle one layer does not exist, so in accordance with the 

boundary conditions (4) the corresponding interactions must be set equal to zero. The missing 

sides with the corresponding layer index are as follows: the side AB with the layer 1xn , the 

side CD  with the layer 1 xx Nn , the side AC  with  1yn , and the side BD with 

1 yy Nn . It is clear that the identities (5) that include these indexes should be modified in 

order to incorporate these zero interactions.  

In order to simplify the resulting equations, we shall use the fact that the system is 

invariant to translations along the z  direction, which suggests us to introduce the Fourier 

transform : 
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z
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.                   (6) 

The system of nine equations can be reduced to only one equation (valid for all xn  and 

yn ) using the substitution 

     xxyxyxmnmn nnmmnn
yyxx

sin1sin,;,,;;  

    xy nn sin1sin   

(7)                                               
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(8) 

From this equation it is easy to derive the final expression for the Green's function, i.e.: 
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The coefficients 
x

L     and 
y

L    can be determined from the equations 
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The dispersion law is given by: 
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(12)                                 

We can now discuss the effects that appear due to the broken translational symmetry. A 

first observation is that standing waves form along the x and y directions. This means that in  

these directions the electron currents will not propagate. Another observation is that the 

momentum space  zk,,  is narrower than the configurational space  zyx nnn ,, . This means 

that an anisomorphism of the type   1,1,  mnmn  will occur. This effect is called 

autoreduction
6
 and appears because for 0 , 1 xN , 0  and 1 yN  the 

transformation (7) leads to a null value of the Green's function. 

Note also that in the electron spectrum there is also an energy gap equal to 
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It should be recalled that in the Hubbard model applied to the bulk structure the energy 

gap does not exist. 

We can now use the spectral intensity of the Green's function  
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in order to determine the electron concentrations. In the chemical potential representation these 

concentrations are: 
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Note that in the above formula the functions F and   are expressed in terms of 

coefficients L. For the case of a 3x3 nanorod the parameter 0  is just the chemical potential 

defined as the electron energy of the Fermi boundary, i.e. 
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We shall now establish the electron concentrations in the vicinity of the Fermi boundary 

for the 3x3 nanorod. This nanorod contains nine atoms in the cross section, but due to the 

autoreduction effect only four of them will have a non-zero concentration. The antiisomorphism 

   1,1,  mnmn  in this case goes over to 3x3 2x2. Using the standard procedure for the 

calculation of the concentrations near the Fermi boundary, we have found that the values of the 

concentrations are as follows (see fig. 2). 

Note that the concentrations at boundary atoms are higher than those of the internal 

atoms. This means that a skin-type effect can appear in the rod. 
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Figure 2. Electron concentrations for a square nanorod 3x3. 

 

3. Mechanical oscillations in the nanorod 

 The analysis of the phonon subsystem requires the use of two types of Green's function. 

These are the displacement-displacement and the momentum-momentum Green‘s functions. We 

will state here only the final conclusions. One finds that the autoreduction effect does not appear 

in the phonon subsystem and that the acoustical branches of the phonon spectra, which are 

usually present in bulk structures, do not exist in the nanostructure. One also finds that every 

phonon branch possesses a lower or higher energy gap. These energy gaps decrease with the 

increase of thickness of the nanostructure.  

The phonon energies of nanorod are given by: 
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where C is Hook's constant, M is mass of atom and the integers   and   take the values 
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 1,...,2,1  xN ;  1,...,2,1  yN                                                 (17) 

The minimal phonon energy is different from zero: 
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The presence of this gap practically means a shift of the absolute zero to the 

value 0min
B

g
k

E
T . Other processes, such as the virtual exchange of phonons and high 

transparency, can also add to the temperature gT  a few kelvins. Our results concerning the 

potential increase of the critical temperature with respect to that corresponding to the bulk 

structure are summarized in the two tables.Table 1 shows the temperatures gT  corresponding to 

the phonon energy gap and Table 2 shows the critical temperatures for the bulk structure.  

Table 1.  The potential temperatures gT  for the phonon energy gap. 

 

Element 

gT  (K) 

2xN  3xN  5xN  10xN  

Lead Pb 9,9371 8,0242 5,7782 3,3893 

Tantalum Ta 42,4587 34,2854 24,6887 14,4819 

Niobium Nb 43,5895 35,1985 25,3462 14,8676 

Aluminium Al 51,0370 41,2124 29,6767 17,4078 

Tungsten W 56,1160 45,3137 32,6300 19,1401 

Vanadium V 62,4129 50,3984 36,2915 21,2879 

Molybdenum Mo 70,8597 57,2192 41,2032 24,1689 

 

Table 2.  The critical temperature and relevant parameters for the bulk superconductors. 

Element  (g/cm
J
) C(m/s) Atomic mass Lattice const. (m) TC(K) 

Aluminium Al 2,70 5000 26,982 4,050E-10 1,140 

Vanadium V 6,00 4560 50,942 3,020E-10 5,380 

Niobium Nb 8,57 3480 92,906 3,300E-10 9,500 

Molybdenum Mo 10,28 5400 95,940 3,150E-10 0,900 

Tantalum Ta 16,69 3400 180,948 3,310E-10 4,483 

Tungsten W 19,25 4290 183,840 3,160E-10 0,012 

Lead Pb 11,34 1190 207,200 4,950E-10 7,193 
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Conclusion 

The main goal of this work was to point out that in nanorods an increase of the critical 

temperatures can be expected. We have determined the electron and phonon dispersion laws in 

the nanorod, with the conclusion that the energy gap for the phonon excitations is sufficiently 

large in order to cause a shift in the critical temperature. This gap is maximal for 3x3 nanorods 

and decreases with the increase of surface of nanorod cross section. Our conclusion seems to be 

supported by the data in
7.

For the electron subsystem in the nanorod, we have found that a skin 

effect can occur, and that the electron spectrum contains an energy gap, although in the bulk 

structure the energy gap is absent.  
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