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We consider a system of concentric rings with a variable M number of 

sites in each ring. The influence of the magnetic field is also taken into 

account. The system is described using the attractive Hubbard Hamiltonian 

for electron-hole pairs. We study the evolution of Aharonov-Bohm 

oscillations when rings are added. The case of the small distance between 

rings can be approximated with the continuum case. When the distance 

between the rings is large enough, we can find that the AB oscillations 

decrease very rapidly once we increase the circumference of the ring. 

 

 

 

1. Introduction  

Remarkable progress in the field of controlled production of nanostructured systems such 

as quantum rings, allow the study of quantum transport properties through artificially fabricated 

nanostructures [1-3]. Many interesting quantum effects can be also found in coupled 

nanostructures where the electronic transport is affected by the phenomena of quantum 

interference. Quantum rings offers the possibility of trapping magnetic flux in their interior, 

showing new and interesting quantum phenomena, such as the Aharonov-Bohm effects [4]. 

When the ring width becomes large the Aharonov-Bohm effects are suppressed.  

In this work, we consider a system consisting of nano-rings with an electron and hole 

threaded by a perpendicular magnetic flux. We study in a controlled way how the excitonic 

Aharonov-Bohm oscillations evolve when additional rings are added. We describe the electron-

hole system on the ring by Hubbard model. 

In the first case we consider a single ring, with a finite number of sites. We study the 1D 

model and the analytical expressions are obtained and compared to the 1D continuum approach. 

In the case of two rings we compare the Aharonov-Bohm oscillations with those obtained 

in the 1D case. 
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2. Model and formulation 

An interesting nanodevice is a system of N rings and M sites in each ring, threaded by 

magnetic field perpendicular to the lattice as shown in Fig.1. 

 

 

 

 

 

 

 

Figure 1. Schematic view of 2 rings and M sites in each ring. 

 

In our work we consider up to two annular rings with a single electron and a single hole. 

The interaction potential is short-ranged and the system is described by fermionic Hubbard 

model. The 1D Hubbard model with the neighbor hopping was solved exactly by Lieb and Wu 

[5]. The case involving magnetic flux was also considered [6-9]. We suppose that only the 

possibility of nearest– neighbor hopping exists.  

In the general case the full system can be described by the Hamiltonian: 
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where mnmn aa ,, ,
  and mnmn bb ,, ,

  are raising (lowering) operators for electrons and holes, satisfying 

the standard fermionic anti-commutation relations. The parameters 
||

nt  represent the hopping 

coefficient between neighboring sites along the n-th ring, and 


nt  is the hopping coefficient 

between neighboring sites on the n-th and n+1-th ring.[10] The notation 0 nn  is used, 

where Ф0 is the flux quanta. 
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The effective mass of the electron and hole has a fixed value, so the inter- and intra-ring 

hopping coefficients have an inverse-square law dependence [11] on the radius of the ring. As 

usually ε =1 and μ=0.2 [12]. Also nr  is the radius of the n-th ring and  Mnrd nn /sin2  is the 

chord distance between neighboring lattice points of the n-th ring. 

 

3. Results and discussions 

3. 1. Case for a single ring 

 

In this case the Hamiltonian matrix is: 
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Considering the wave function of the form [13]: 

 

















M

j

j

M

M

j

j
M

j

j

T TcTcTc
1

1

1

1

1

1

1

1

0
1...00

0...10
)/ˆ(...

0...01

0...10
)/ˆ(

0...10

0...10
)/ˆ(|  ,     (6) 

 

the coefficients are: 
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where: 

 qarg                                                                                                          (8) 

and  

  qE 2/cosh                                                                                              (9) 
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The secular equation is: 
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and the bound state solutions exist if 
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Figure 2 shows the oscillations of the ground state energy versus the magnetic field. The 

Aharonov-Bohm oscillations decrease rapidly with increasing ring radius and the number of the 

sites on the ring. The maximum amplitude of the Aharonov-Bohm oscillations corresponds to 

integer and half-integer multiples of flux quanta, and the period is 0T . 

 
Figure 2. The Aharonov-Bohm oscillations of exciton energy corresponding to three values of the single ring site 

number, for γ=2, d=1, ε=1, μ=0.2, and k=0. M=5 (continuous line), M=7 (point line) and M=9 (dashed line)  

 

3. 2. Case for 2 rings 

 

In this case the Hamiltonian matrix is: 
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where 
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In Figure 3 we plot the ground state energy as a function of flux measured in flux quanta 

units. We observe the presence of slow and fast oscillations. The fast oscillations have the period 

of 
01 fT and the slow ones of  112  MTs .  

 

In the case of small M the presence of both oscillations can be observed. When the 

distance between the rings is large the fast oscillations are weakly modulated by slow ones. This 

is explained by the small probability of inter-ring hopping and of the weak influence of the 

second ring. Decreasing the distance between the rings shows the increasing amplitude of the 

slow oscillations compared to the fast ones. 

 

When M is large enough the presence of the oscillation with the period 01  is 

completely absent. This finding is consistent with the single ring case. The slow oscillation is 

always present and has the period indicated. When the distance between the rings is small and the 

probability of inter-ring hopping is relatively large we can identify an oscillation due to this term 

in the Hamiltonian. 
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Figure 3. Ground state energy oscillations as a function of 01   for Δr=1.5 and 412   (top), Δr=0.8 and 

212   (centre) and Δr=0.2 and 25.112   (bottom). The parameters are: γ=2, ε=1, μ=0.2, k=0. 

Continuous lines correspond to M=5 and dashed lines to M=15 

 

Conclusions  

In this paper we studied the Aharonov-Bohm oscillations in 2D ring structures described 

by an attractive fermionic Hubbard model in the presence of magnetic field. The existence of 

bound states of electrons and holes identical to spin-singlets when using the standard electronic 

interpretation is well known [5], and has been previously also been studied in the framework of 

quantum breathers [13]. In these cases, if the anharmonicity is strong, there is an extended bloch 

state with two or more strongly correlated particles [14].  

In the case of a single ring we obtained analytical formulae for the energy spectrum of the 

electron. The Aharonov-Bohm oscillations show the usual periodicity pattern. The decay of the 
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oscillations with increasing the number of the sites (and the circumference of the ring) can be 

observed [15, 16]. In the case of 2 rings, the magnetic flux dependence of the ground state energy 

shows fast and slow oscillations [17, 18]. The amplitude of two oscillations is inversely 

proportional with the distance between the rings. The period of the slow oscillations is equal to 

01 fT  and that of the fast one is  112  MTs . In the case of large number of sites 

per ring the oscillation due to inter-ring hopping can also be identified. 

 

Acknowledgements  

The authors are grateful to Prof. PhD. E. Papp, Faculty of Physics, Vest University of 

Timisoara and Prof. PhD. C. Micu, North University of Baia Mare for useful discussions. 

 

References  

1. S. Datta, Transport in Mesoscopic Systems, Cambridge University Press, (1995) 

2. T. Chakraborty, Quantum dots, Elsevier Science, North Holland, (1999) 

3. A. Lorke, R. J. Luyken, A. O. Govorov, J. P. Kothaus, J. M. Garcia and P. M. Petroff, Phys. 

Rev. Lett. 84 (2000) 2223 

4. Y. Aharonov, D. Bohm, Phys. Rev. 115 (1959) 485  

5. E. H. Lieb and F. Y. Wu, Phys. Rev. Lett. 20 (1968) 1445  

6. B. S. Shastry and B. Sutherland, Phys. Rev. Lett. 65 (1990) 243  

7. B. Sutherland and B. S. Shastry, Phys. Rev. Lett. 65 (1990) 1833  

8. E. Papp, C. Micu, Low-dim. nanoscale syst. on discrete spaces, W. Sci., Singapore, (2007) 

9. E. Papp, C. Micu, L. Aur, D. Racolta, Physica E 36 (2007) 178 

10. F. Palmero, J. Dorignac, J. C. Eilbeck, R.A. Roemer, Phys. Rev. B 72 (2005) 075343 

11. K. Maschke, T. Meier, P. Thomas and S. W Koch, Eur. Phys. J. B 19 (2001) 599  

12. H. Hu, J. L. Zhu, D. J. Li and J. J. Xiong, Phys. Rev. B 63 (2001) 195307  

13. A.C. Scott, Nonlinear Science (2nd. ed.), OUP, Oxford (2003) 

14. J. Dorignac, J. C. Eilbeck, M. Salerno and A. C. Scott, Phys. Rev. Lett. 93 (2004) 025504 

15. F. Göhmann and V. E. Korepin, Phys. Lett. A 260 (1999) 516  

16. P. A. Orellana, M. Pacheco, Phys. Rev. B, 71 (2005) 235330 

17. D. Racolta, Rom. Journ. Phys., 54, 7–8 (2009) 659 

18. A. V. Maslov and D. S Citrin, Phys. Rev. B 67 (2003) 121304(R)  


