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Abstract 
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The relationship between the quadratic first- and second-order actions are 

investigated at both Lagrangian and Hamiltonian levels. 

 

 

1. Introduction 

 First-order systems are in general second-class theories, involved in many useful 

applications, such as self-dual and intermediate models, linearized curved vector Chern-Simons 

gravity [1 - 3], or in phenomenological theories. The problem of converting second-class systems 

into some first-class ones attracted much attention lately [4 - 10]. 

In this paper we investigate the relationship between the quadratic first- and second-order 

actions at both Lagrangian and Hamiltonian levels. In view of this, starting with a quadratic first-

order system subject to purely second-class constraints we implement the following steps: i) we 

prove that there exists a second-order Lagrangian whose Euler-Lagrange equations describe the 

same dynamics as the first order-system; ii) the Hamiltonian of the second-order system 

coincides with the canonical Hamiltonian of the first-order system on the second-class constraint 

surface. Steps i) and ii) show that a quadratic first-order system endowed only with second-class 

constraints can be equivalently described by means of a second-order action. 

 

2. Quadratic first-order systems 

We take a bosonic first-order system, described by the Lagrangian action  



21 

 

   ,
2

1

2

1
= 00 dtLqqqqadtqS

ji

ij

ij

ij

i

 







   (1) 

where ija  and ij  are some antisymmetric, respectively symmetric, constant invertible matrices. 

The equations of motion read as 
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where 
ij

a  denote the elements of the inverse of the matrix of elements ija . Let  ti  be the 

solution of equations (2) in the presence of the initial conditions 
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System (1) possesses at the Hamiltonian level the irreducible primary constraints  

   0.
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Due to the fact that ija  is invertible, it is obvious that constraints (5) are second-class, their 

consistency leading to no further constraints, but merely determining the associated Lagrange 

multipliers. 

 

3. Lagrangian second-order approach to first-order systems 

The next theorem represents one of our main results. 

Theorem 1 We consider the Lagrangian 
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where ij  represents the inverse of ij . Then, the solution  ti
  to the Euler-Lagrange 

equations 0=/0

i
qL   together with the initial conditions 

     i

kj

ikiii
qatqt 0000 =,=    (7) 

coincides with the solution to equations (2) in the presence of the initial conditions (3), i.e. 

    .= tt ii   (8) 

 

Proof. The Euler-Lagrange equations 0=/0

i
qL   take the form 
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Taking into account that the matrices ija  and ij  are invertible, from (9) we find that 
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where 
i  are some constants determined by the initial conditions of the form (7). Then, from (10) 

we arrive at 
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Writing down (11) for 0= tt  and using (7), we deduce the relations 

 0,
i  (12) 

such that (11) leads to 

     0. tat
j

kj
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Comparing (13) with (4) we obtain (8). This proves the theorem.   

In order to be able to compare the time evolutions described by equations (2) and 

respectively (9), we must impose in each formulation some initial conditions that are compatible. 

This means that given the initial conditions (3) for equations (2), we must take (7) as initial 

conditions for equations (9). 

 Then, Theorem 1 ensures that the second-order system (6) describes the same dynamics as 

the quadratic first-order system (1). 

 

4. Hamiltonian relationship between first- and second-order systems 

In this section we investigate the Hamiltonian relationship between the systems described by the 

Lagrangians (1) and respectively (6). Using (5) we get that the canonical Hamiltonian of the first-

order system (1) reads as  
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Now, we construct a Hamiltonian 

  ,,intermsextra= 00 pqHH 
  (15) 

such that 

   ,strongly0=,0 iH   (16) 
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where the functions i  are given by (5). The construction of 

0H  goes along the same line with 

the proof of Theorem 1 from [8]. Thus, we take  
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with k
ii

c
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1  unknown coefficients depending on  pq, . Replacing (17) in (16) and identifying the 

coefficients of the same power order in i , we get a tower of equations for k
ii

c


1 , with the 

solution  
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The above expressions of the coefficients yield the Hamiltonian 

0H  in the form  
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On the other hand, the Hamiltonian of the second-order system (6) is expressed by 
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while the corresponding Hamilton's equations read as 
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Substituting (21) in (22) we arrive at 
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1
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In terms of the Poisson bracket, relations (23) take the form 

   0.=,0 iH   (24) 

We observe that equations (16) and (24) are identical. This is not a surprise because, if we use (5) 

in (19), we deduce the formula 
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The last formula emphasizes that the Hamiltonian of the second-order system coincides with the  
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The last formula emphasizes that the Hamiltonian of the second-order system coincides with the 

canonical Hamiltonian of the first-order system on the second-class constraint surface (5). More 

precisely, from (25) we find that: a) the Hamiltonian of the second-order system (6) is obtained 

by adding some liniar and quadratic terms (in the second-class constraints functions i ) to the 

canonical Hamiltonianul of the first-order system (1); b) conversely, the canonical Hamiltonian 

of the first-order system (1) represents the restriction of the Hamiltonian of the second-order 

system (6) to the second-class constraint surface (5). 

 

Conclusion 

To conclude with, in this paper we have proved that a quadratic first-order system that subject to 

purely second-class constraints can be equivalently approached in terms of a second-order action. 
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