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For a better understanding of the cosmological particle generation in 

strong electric fields, recently, a growing interest has been given to the so-

called analogue models of gravity, created in condensed matter 

laboratories. This paper deals with the evolution of relativistic bosons 

moving in external electric and magnetic static fields. After solving the 

Klein-Gordon equation, we analyze the boson creation process and 

compute the main quantities characterizing this phenomenon, within the 

WKB formalism. 

 

 

 

1. Introduction  

The particle production in external electric fields by quantum mechanical tunneling has 

been a challenging topic, ever since Breit and Wheeler have proposed it as a result of two 

photons collision [1]. 

This has come soon after Klein found a more intriguing result [2]: for the relativistic 

particle moving in an external step-function potential, in the case 2
0 0V w m c  , the reflected 

flux is larger than the incident one, although that the total flux is conserved. 

After many years, it seams that this so-called Klein paradox of unimpeded penetration of 

relativistic particles through high and wide potentials can finally be tested in experiments 

involving electrostatic barriers in graphene [3]. 

Going further to more exotic but related topics, the cosmological particle creation has 

been studied as a consequence of the spacetime expansion [4]. For a better understanding of this 

phenomenon, recently, a growing interest has been given to non-trivial quantum effects in 

laboratories devoted to condensed matter systems, by creating the so-called analogue models of 

gravity, as they are described in [5]. 
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Of course, in this paper, we are referring to ideal bosons moving in external fields, which 

are not available in nature but, to a very good degree of approximation, one can find measurable 

properties of mesoscopic systems that do actually behave as it is predicted by such theoretical 

models [6]. 

 

2. Relativistic Bosons  

The relativistic complex charged boson of mass 0m , evolving in a static magnetic field 

orthogonal to a static electric field, is described by the U(1)-gauge invariant Lagrangian density 

  
2 2

* *0

2

i j
i j

m c
η Dψ D   L=        (1) 

where the gauge covariant derivatives are defined by 

i , i ,ψ = , ψ = .i i i i

iq iq
D A D A

 
      

For a bidimensional thin sample in orthogonal external fields whose intensities are related 

by 0 0/E c B , the components of the four-potential are given by 

0
0 40, ,x z y

E
A A A B x A x

c
            (2) 

The Euler-Lagrange equation corresponding to the Lagrangean (1) has the explicit form [7] 

2 2 22 2
20 0

, 0 , 0 02 2 2 2
2 2 0

i j
i j y

m c Eq q q x
η i B x i E B

c c

  
       

   

     (3) 

and one may employ the standard variables separation 

   exp y z

i
x p y p z wt

 
    

 
         (4) 

to come to the following differential equation for the x-depending part, 

22 2
2 2 2 2 2 2 20 0

0 0 02 2 2 2 2

1
2 0y z y

E w Ew
p p m c qx B p q x B

x c c c

    
           

     


   (5) 

Using the notations 

2
2 20 0

0 02 2
, 0 ,y

E w E
B p B

c c
             (6) 

and the new variable 
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1
qx

q

 
  

 


 


         (7) 

the Eq. (5) becomes 

 
2

2
0 02 2 2 2

02 2 2

1
0

y

z

wB p E
p m c

q c

           
   
  


 

 
 

being satisfied by the parabolic cylinder functions [8] 

   1 iλ

2

 1D i


       N ,        (8) 

where the parameter   is 

 
2

0 0 2 2 2
02 2

1 y

z

wB p E
p m c

q c

 
   
 
 


 

      (9) 

 

3. Particle Creation within WKB  

On the bi-dimensional sample of finite width perpendicular to the magnetic field, the 

bosons are evolving in the external electric field as one-dimensional bounded harmonic 

oscillators that can be treated within the phase-integral approach [9]. 

In our case, the system of bosons is described by the wave equation (3), which admits the 

solutions of the general form (4). With the gauge (2) and the notations (6), the Klein-Gordon 

equation in the momentum space is 

2

2 2 2 2 2 2 2 2
0 2 0x y z

w
p p p m c q x qx

c

 
       

 
       (10) 

and allows us to write down the momentum xp  as 

   
2 22 2

xp q x b a iq a x b             (11) 

once we have introduced the notations 

 
2

0 02 2 2 2
02 2 2 2 2

1
,

y

z

wB p E
b a p m c

q q c

 
    
 
 



  
    (12) 
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As in the case of bounded harmonic oscillators, we define the operator 

2

1

1
exp

x

x

x

P p dx
 
 
  
          (13) 

satisfying the equation 
2 1P   ,  [10]. Explicitly, this means 

   
2

1

22 22
exp exp (2 1)

x

x

i
P q a x b dx i n

 
     
  

      (14) 

where the integration limits are the roots of the equation 

 
2 2

0x b a            (15) 

The relation (14) leads to the following discrete set of energy levels  

 
2

0 0 2 2 2
02 2

(2 1)
y

z

wB p E
p m c n q

c


    


      (16) 

  

Within WKB formalism, the transmission coefficient for the quantum tunneling of the 

wave through the one-dimensional potential barrier is defined as 

2

1

2 2
exp

x

x

x

T p dx
 
 
  

         (17) 

where 

2

2 2 2 2 2 2 2
02x y z

w
p q x qx p p m c

c

 
        

 
       (18) 

is the classical momentum. The integration limits are the roots of the equation 

2

2
2 2 2 2

0
2

2 2
2 0

y z

q

w
p p m c

c
x x

q

 
    

 
  

 
      (19) 

and they are defining the turning points of the classical trajectory, separating the positive and the 

negative energy states, once we consider a null electric field outside the range  1 2,x x x .  By 

performing the integration in (17), the transmission coefficient reads  

 
2

0 02 2 2 2
02 2

exp
y

z

wB p E
T p m c

q c

  
    
   
   



 
     (20) 
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In the particular case of a vanishing magnetic induction, the above result becomes 

 
2 3

2 2 20

0 0

exp expo y z

m c c
T p p

qE qE

   
     

  

 
     (21) 

leading, by integration in the phase-space, to the probability amplitude  

0
0 2

0

exp ,
4

cqE E
P S

Ec

 
  

 



        (22) 

where S is the transverse surface. This contains the well-known Sauter exponential [11, 12], 

expressed in terms of the critical electric field, Ec. 

In order to compute the transition rate per unit time, one has to divide the probability 

amplitude by the total volume, V S x  , and time interval during which quantum tunneling 

occurs, t . For the relativistic particle evolving in an external electric field alone, the so-called 

tunneling length and the time interval being [6] 

2
0

2 1 2
0 0

2
, ,

m c h
x x x t

qE m c
       

the transition rate per unit time and volume reads 

 
2

00
0 2

0

exp .
4

c
qEP E

S x t Eh c

 
    

   



      (23) 

Finally, for the more general transmission coefficient (20), we write down the probability 

amplitude as 

2 2
0exp .

2

+
2 z
z

-

m c π dp
P exp p I

q q





     
      

     


  
     (24) 

This contains the following integral over the momentum component yp and the energy w , 

 0
0 02 3

0

exp
2

2 y

y

dpB π
I p E wB dw

c qq c

 



   
     
    

   
    (25) 

where we have assumed the continuum spectrum approximation, valid for large values of  , and 

the integration measure coming from (16). Obviously, the above integral is of the general form 

2
exp ( )abI ax by dxdy


   
   

and has a convergent part which can be computed as 1/( ).
c
abI ab   
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Putting everything together, one finally gets the following probability amplitude 

 

2 22
0

3

0

exp
2

m ccq
P S

qE

 
  

 





       (26) 

and the transition rate per unit time and volume 

2 22 2 3
0

2 2
0

exp
8

m cc q

qh E

 
   

 





        (27) 

where the tunneling length has been approximated to 02m c
x

q
 


. 

 

Conclusions  

The present paper deals with the creation of massive bosons evolving in an external 

strong electric field orthogonal to a weak constant magnetic induction, oriented along Ox and Oz, 

respectively. For the convenient gauge (2), we derive the particle wave functions, solutions to the 

Klein-Gordon equations, in terms of parabolic cylinder functions. The WKB formalism allows us 

to compute the transmission coefficient and the transition rate per unit time and volume. As it is 

expected, for 0 , corresponding to 0 0 /B E c , the expressions (26) and (27) are both 

vanishing. For a zero magnetic induction, 0 0B  , the well-known results from literature (22) and 

(23) are recovered. 
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