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Abstract  
The paper presents a method for experimental data interpolation using the software MathCAD. It 
is written and explained a program allowing the processing of real experimental data, affected by 
experimental errors, obtained during lab and research activities. Some advantages of interpolation 
with MathCAD are put into evidence: simplicity of program, decrease of experimental errors, and 
prediction of theoretical dependencies for the determined physical parameters.  
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1. Introduction 

Experimental data obtained from measurements of different physical parameters are 

affected by errors, depending on the quality of measuring instruments and devices, 

experimenter’s experience, external factors, etc [1-4]. Most often, experimental errors are 

randomly distributed, giving values placed nearly the theoretical curve describing the 

dependence between the determined parameters. Interpolation is the operation of tracing an 

experimental dependence curve, between experimental points, after the rule given by majority 

of points [5, 6]. It is usually made by the experimenter, visually, its accuracy depending on 

the experimenter’s experience. It can be done more rigorously with MathCAD, software 

containing special interpolation functions/commands – taking into account the characteristics 

of randomly distributed errors [7-11]. The work presents these functions, by simulating a real 

situation of obtaining experimental data with errors less than 10%, obtained in usual 

measurements in school/university labs, by inexperienced experimenters. 

 

 

 

INTERPOLATION WITH MATHCAD: A METHOD TO

FROM EXPERIMENTAL DATA 
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2. The MathCAD Program 

We will simulate the obtaining of some experimental data regarding a quadratic 

dependence of a mobile’s coordinate, as a function of moving time. Fist, a time row is 

efined, having values from 0 to 9 (seconds), with step 1 (second). These values can be 

co s 

obtained by typing „:”; the c . 

t :=  0,1 .. 9           (1) 

Then, a function x(t) is defined, giving the values (in meters) determined  with perfect 

accuracy (0% relative errors). 

x(t) := t2 + 2t + 3         (2)  

We will ta with errors 

distributed within 10% (figure 1). 

d

nsidered those determined with perfect accuracy (0% relative errors). The character „:=” i

haracter „ ..” is obtained by typing  „;”

define two vectors, te and xe, containing experimental da
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FIGURE 1. Input experimental data. 

 

Generation of functions values in Figure 1 was obtained by typing “=”. Generation of 

vectors in figure 1 was obtained by typing “ALT+m” and introducing in the dialog box the 

number of columns 1, and number of rows 10, respectively.   

Now fallows the interpolation program. 

xs1 := cspline(te,xe)          (3) 

xs2 := pspline(te,xe)          (4)  

xs3 := lspline(te,xe)           (5) 

Three variables are defined and characterized by the values of three functions: cspline, 

pspline and lspline. Each function returns a vector of second derivatives for data vectors te 

nd xe. This vector becomes the first argument of the interpolation function. The resultant 

pline curve is cubic, parabolic or linear at the endpoints, depending on the function. 

a

s
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m := slope(te,xe)          (6) 

b

 polynomial that best fits 

the xe

nterpolation uses to find a set of second order polynomials that 

best f

elements  a second degree function together with her first, 

second and third derivates. 

 

 

          (10) 

 

 

I will define a vector with zero initial components. 

 

 

               (11) 

     (12) 

hould be 

near the limits of t). 

 := intercept(te,xe)           (7) 

These functions return the slope and intercept of the line that best fits our data in a least 

square sense. 

xregress := regress(te,xe,2)         (8) 

Returns a vector which interpolation uses to find the kth order

 and te data values. 

xloess := loess (te,xe,1)         (9) 

Returns a vector which i

it a neighborhood of the xe and te data values. 1 is the size of the neighborhood. 

I will chose a second degree function for interpolation, then define a function of 

parameters u and z, containing as 

 

The next function is useful when we have a set of measured xe and te values and we 

want to fit an arbitrary function to our data. 

P := genfit(te,xe,vg,F)       

 

                       (13) 

 

We choose a function g(r) to indicate the function best fitting the experimental data 

(index obtined by typing “[“). 

g(r) := F(r,P)0                       (14) 

We give values to index i (starting with 0 in MathCAD) and parameter r (that s

F z u,( )

u0 u1 z. u2 z2.
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i := 0,1 .. 9          r := 1,1.1 .. 10         (15) 

The graphics of functions are presented in Figure 2. One can see the experimental 

value  

g/superposing very well.   

s with squares, the ideal dependence with interrupted line and the interpolation function

with line, fittin
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ions. 

Now we will analyze the same experimental data, but choosing a fourth degree 

n

line in equation 10 (containing a fourth degree polynom) and vector in equation 11 (having 5 

eleme

uperposing, interpolation being done too close to 

the ex

the experimentator is the one that should appreciate how big the experimental errors are and 

which type of function could better approxima  expe ental data. 

ing back to the values of function P, from relation (13), best approximating 

exper law 

ied physical phenomenon. Hoever, the values of the second 

degre meters (1.116, 1.046, 4.173) are far away from those describing the 

ideal 

cy or, more accessible, increasing number of experimental data [12].   

FIGURE 2. Graphics of funct

 

interpolatio  function. The program will be the same presented before, except the command 

nts). The obtained graphics are those in Figure 3.  

One can see that the two lines are not s

perimental points. This could be good for much smaller experimental errors. Therefore, 

te rim

Comm

imental data, let us remark that interpolation allows the obtaining of the 

describing/governing the stud

e polynomial para

dependence (1, 2, 3). A better interpolation/law can be obtained by increasing the 

measurements accura
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FIGURE 3. Data interpolation using a fourth degree function. 

 

Figure 4 shows the results obtained for 50 pairs of experimental data. The obtained 

values of the second degree polynomial parameters (1.048, 1.781, 2.986) are very close to 

those describing the ideal dependence, even if the relative experimental errors are still 10%.  
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FIGURE 4. Graphics of functions for 50 pairs of experimental data. 
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Conclusions 

MathCAD is a useful tool for interpolation of experimental data affected by relatively 

high errors. By interpolation are eliminated both measuring instruments and experimenter 

caused errors.  A more detailed study shows that interpolation can lead to a strong decrease of 

experimental errors (for example, from 10% to 1%) and to a rigorously prediction of the 

governing law, by a simple increasing of experimental data number.   
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