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Abstract 
Singularities of solutions for a system of Coupled Schrodinger Equations are studied according to 
Gantmacher's method for differential matrix equations. Properties of the solutions of Coupled 
Schrodinger Equations, obtained within this formal frame, are related to basic properties of 
Scattering Matrix for multichannel system. 
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1. Introduction 

The Coupled Schrodinger Equations are formal frame for many problems of Quantum 

Scattering Theory, e.g. [1]. Usually, for practical purposes, a system of coupled Schrodinger 

equations is solved by numerical approximation methods. There are now methods [2], [3], 

which provide analytical formulae for the regular and irregular solutions of this system, as 

well as for their derivatives, [4]. These methods permit an insight into the properties of the 

solutions of the system. In this paper we present some properties of the solutions of matrix 

Schrodinger equation which result from their analytical expressions, as well as, from 

Scattering Matrix symmetry and unitarily. 

 

2. Method and samples 

Let us consider the system of n coupled Schrodinger equations: 
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The angular momentum iγ , the Coulomb parameter iβ  and the potentials a

omplex quantities. We suppose that the real part of 

iV nd ikV  are 

c  is a positive number: Re  iγ

in m ii σγ + , nmi ,,1,0 L=  , and 10=+− 1 << iσ . 

ansformed [2, 3], into the followingThe system (1) can be tr  first order matrix equation: 
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The complete solutio
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where ct to 

. The
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n of this system is [3]: 
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 r and ir stand for regular and irregular, respectively, and '  for derivation with respe

X⎛ ' irr (4)  

x  explicit forms of solutions are [3, 4]: 
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The same notations as in [3] and [4] were used
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We list here the following properties of  and 

jninijinijij γλδγλλ ;; ;1 −===Λ ++−+

 1211,UU ( )0, 1222 =UU , which can be 

obtained from [3] (formula 18): 
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T is a constant matrix and IxG == )0( ; so the singular terms of the type 

come

mx−  or xln  

 only from ik
mM inxx δ2 −=  and Ix DU =+  power series in 1+ [ ]xDU( + ,[  For

( )111 DU +  non-diagonal matrix there are the xln -l e terms in the formula of

ln) 5].

 the regular 

nother context, e.g.[6], and only for 

 

ik

solution. This property is known in a iγ  a real integer. 

 

from ula disap

or half-integ

However 0)0( →→xX r , owing to the presence of the matrix 2Mx . For 012 =U , the first term

irX form pears. The irregular solution irX has a xln -like term only for an 

integer er real part of the angular momentum iγ . For 0221211 == UU=U  
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Let us consider as an example the irregular Coulomb function, . 

         (7)  

xln -like terms in the formulas (5) for the regular and irregular 

ons. 

γGXir =
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For 
2

Re 1
n

≠γ , 012 =U , the first ter )1( +− γm disappear and remains only the 

singularity for the irregular Coulomb function, [7]. Similar properties hold for derivates also. 

This approach to study of matrix Schrodinge

differential equation with finite regular singularity, results into an unitary treatment of some 

special functions,[8]. The solutions  paper, can be verified on 

Hermite polynomials and parabolic cylinder functions. 

 

3. Results and Discussions  

Other properties of the solutions of the system of coupled Schrodinger equations can be 

obtained from Scattering Matrix symmetry and unitarily for a multichannel reaction system. 

We define the R-matrix function for a multichannel system by [9]: 
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Here , denote the multiplic

 (A, B=constant matrices). The R-matrix function for a multichannel system 

x -like 

r equations, applied to second-order linear 

 properties, analyzed in this
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appea f the corresp trix

defined by the : 

= (A = constant matrix)        (10)  

We obtain: 

rs as a Volterra derivative o onding matrix radial solution. Now, the ma  
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0 - arbitrary fixed point. Using this concept and the Volterra - derivative property 

x

)0)(.(det)),((

)( AXD

00 ≠=R x

It has rtie

                  

xXxxXD         (11)  
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We remark that these properties are identical with those of - transition operator 

of quantum dynamic e.g. [10
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s, ]. 

The matrix properties (12) yield to the conditions: 
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Conclusions 

-matrix symmetry implies the pThe R otential matrix symmetry and that the matrix is 

symplectic. Using the same 

Also, the reserve assertion, namely

impli
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