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Abstract

Singularities of solutions for a system of Coupled Schrodinger Equations are studied according to
Gantmacher's method for differential matrix equations. Properties of the solutions of Coupled
Schrodinger Equations, obtained within this formal frame, are related to basic properties of
Scattering Matrix for multichannel system.
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1. Introduction

The Coupled Schrodinger Equations are formal frame for many problems of Quantum
Scattering Theory, e.g. [1]. Usually, for practical purposes, a system of coupled Schrodinger
equations is solved by numerical approximation methods. There are now methods [2], [3],
which provide analytical formulae for the regular and irregular solutions of this system, as
well as for their derivatives, [4]. These methods permit an insight into the properties of the
solutions of the system. In this paper we present some properties of the solutions of matrix
Schrodinger equation which result from their analytical expressions, as well as, from

Scattering Matrix symmetry and unitarily.

2. Method and samples

Let us consider the system of n coupled Schrodinger equations:

d’X(x)
xZ

V(x)X(x) (1)

where V(x) - potential matrix with the properties:

7/,'( i+1) ﬂi
;= V(%) (2)
X X

V.
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V.ix—>0),V,(x—0)=const.(i,k =12,---,n)

The angular momentum y,, the Coulomb parameter £, and the potentials V,and V, are
complex quantities. We suppose that the real part of y, is a positive number: Re
Vo =m,+0;,, m=01---.n ,and 0 <o, <1.

The system (1) can be transformed [2, 3], into the following first order matrix equation:

dY (x)

= A(x)Y (x) 3)

where

v=[*La=(® Vizps 3
o D Rl B S T (3)

The complete solution of this system is [3]:

X

r ir

X' X'
Y:[ r erj:B—IS—lGxMxU+A+D 4)

where 7 and ir stand for regular and irregular, respectively, and ' for derivation with respect to

x. The explicit forms of solutions are [3, 4]:
Xr(x) = TGll(x)lexU11+D1
Xir (x) = X,. (X)UIZ Inx+ TGIZ()C)XMZ xUZZ +D, (5)

The same notations as in [3] and [4] were used (M D, = |Gi6ik|)

f_ ntlls
2(y, +1) X Y

S T H i,n+1-i

ik |

B,=-By,=

B,=8B, =

; =0;5,,=1
Hﬂ/j > b — (7n+1 1)5113 /,i'n+l n+j _(7,,+[,,,+j + 1)61/

We list here the following properties of U,,,U,, and U,,,(U,, =0), which can be

obtained from [3] (formula 18):

U, =U,, =0 For Re(y, - y,) =123, (all i and j)

U,, =0 For Re(y, —y,) =1,2,3,---(all i and j) (6)

U, =U,=U, =0 For Rey, # % (n=1,23,), (all i)
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T is a constant matrix and G(x =0) =1 ; so the singular terms of the type x™™ or Inx
come only from x> = ‘x"’"*"*‘ 5[,(‘ and xYV"” =1 power series in [(U+D)Inx],[5]. For
(U11 +D1) non-diagonal matrix there are the Inx-like terms in the formula of the regular
solution. This property is known in another context, e.g.[6], and only for y, a real integer.

However X, (x — 0) — 0, owing to the presence of the matrix x">. ForU,, =0, the first term
from X, formula disappears. The irregular solution X, has a Inx-like term only for an

integer or half-integer real part of the angular momentumy,. For U, =U,=U,,=0
(Re Y # gj , there are not the Inx -like terms in the formulas (5) for the regular and irregular

solutions.

Let us consider as an example the irregular Coulomb function, X, =G, .

G, =FU,lnx+G,x"" (7)
For Rey, ;tg U, =0, the first term disappear and remains only the x *"-like

singularity for the irregular Coulomb function, [7]. Similar properties hold for derivates also.
This approach to study of matrix Schrodinger equations, applied to second-order linear
differential equation with finite regular singularity, results into an unitary treatment of some
special functions,[8]. The solutions properties, analyzed in this paper, can be verified on

Hermite polynomials and parabolic cylinder functions.

3. Results and Discussions
Other properties of the solutions of the system of coupled Schrodinger equations can be
obtained from Scattering Matrix symmetry and unitarily for a multichannel reaction system.

We define the R-matrix function for a multichannel system by [9]:
R (x)=X,(x) X '(x)=D,(X,)
R,(x)=X,(x) X,(x)=D,(X,) (8)
Rx)=X'(x) X(x)=D,(X)
Here D,(X)=X'X", denote the multiplicative Volterra derivative, e.g. [5], and

X =X,4A+ X, B (A, B=constant matrices). The R-matrix function for a multichannel system
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appears as a Volterra derivative of the corresponding matrix radial solution. Now, the matrix

[5], X(x,x,) can be defined by the relation:
X(x) = X (x,%) X(x,) ©)

where x, - arbitrary fixed point. Using this concept and the Volterra - derivative property

D =(X A) (A = constant matrix) (10)
We obtain:
R=D (X(x,x,)) (det.X(x,)=0) (11)

The matrix X(x,x,) is the solution of the same equation as X (x) .

It has the following properties:

X(@,k) =X, NX(j.k)

X7, k)= X (k,i) (12)

XG0 =1=[a]

We remark that these properties are identical with those of 7'(z,7,)- transition operator
of quantum dynamics, e.g. [10].

The matrix properties (12) yield to the conditions:

X' (x9,%)) =X, (x4,%)) =1 (13)

Xy (%95 %) = X, (x9,%,) = 0 (14)

Now the R-matrix symmetry R :Ii,, R zléi,R :1;2, (the symbol ~ stands for

1

transposition), implies:
X0 (2,30 X (2,30) = X+ (36,%,) X'+ (6, 0) = 0 (15)
)}'i(x,xo)Xi(x,xo) —)N(i(x,xo)X'i(x,xO) =0 (15"

)}'r(x,xo)Xi(x,xo) —)N(r(x,xO)X'i(x,xo) = )N('i(x,xO)Xr(x,xo) —)N(f(x,xO)X'r(x,xO) (15™)

The relations (15) have the following matrix form:

Y(x,%,)G Y(x,x,) = G (16)

-1

0
where G is: G:‘ (17)

2n,2n

The relations (16) and (17) tell us that Y (x,x,) is a symplectic matrix.
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Conclusions
The R-matrix symmetry implies the potential matrix symmetry and that the matrix is

symplectic. Using the same method we can show that Scattering Matrix unitarily (R = real
symmetric matrix [9]) implies ¥ =V~ and
Y (%,x,)G Y(x,x,) =G (18)

Also, the reserve assertion, namely V = % (or V' =V") and the relation (16), (or (18)),

implies Scattering Matrix symmetry (or unitarily).
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