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Abstract 
We perform Monte Carlo simulation of the Noncommutative Abelian Chern-Simons theory on the 
Moyal (fuzzy) plane using the action proposed by Polychronakos and Nair. Using the simple 
metropolis algorithm, we see that the action and the specific heat of the system approaches zero 
for small values of the non-commutativity parameter θ on the Moyal plane but shows fluctuations 
with increasing value of the parameter. We compare this with the classical model.  
Keywords: Noncommutative geometry, topological field theory, numerical simulation. 
 
 
 
 

1. Introduction 

Noncommutativity of spacetime was initially considered by Heisenberg as a possible 

mechanism to control the divergences in quantum field theory, though the first paper 

documented to discuss the quantisation of spacetime is due to Snyder [2]. However, the 

subsequent development of the highly successful renormalisation program pushed this idea 

into obscurity. Yet, over the last ten years or so, this idea has reappeared due to the 

development of the Noncommutative geometry due to Alain Connes [3] and also due to new 

results in string theory [4]. 

Noncommutative Geometry (NCG) can be thought of as a framework to understand 

geometry within an algebraic setting as one thinks of the manifold as a representation space of 

the algebra of the functions defined on the manifold. So, it might be interesting to study 

“quantum” geometry using this framework. As a preliminary step in this direction one is 

tempted to study topological field theories in this framework as they manages to encode the 

topology of the underlying spacetime, on which the theory is defined.   
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In this work, we report on our attempts to numerically simulate a simple topological 

field theory, namely, the noncommutative Abelian Chern-Simons theory [5] defined on a 

spacetime whose spatial section is the Moyal plane which is defined by the operator relation 

[x,y] = i θ , θ  being the parameter measuring the noncommutativity. In this framework, the 

coordinates x, y are then represented by NxN dimensional Hermitian matrices.   
 

2. The Model  

The basic object for defining a gauge theory on a noncommutative manifold happens 

to be the covariant derivative operator, which will also be represented by an NxN dimensional 

Hermitian matrix. In particular, the action for the noncommutative Abelian Chern-Simons 

model on a 3-manifold is given by (our convention is the same as in [5]):  

S= 2 π θ  εabc Tr ( 2
3

Da [Db, Dc] + ω ab Dc)       (1) 

where Da, with a=1, 2, 3, are NxN Hermitian matrices and ω ab  is the symplectic form, which, 

on the Moyal plane, has non-vanishing components ω 12 = - ω 21 = 1
θ

, with rest of the 

elements being equal to zero.  This choice is dictated by the fact that the symplectic form will 

measure the noncommutativity of the spacetime derivatives and thus will be the matrix 

inverse of the commutator of the spacetime coordinates.   

The resulting equation of motion for the system is given by  

[Da, Db] = iω ab           (2) 

which is basically the equation for flat connections, similar to the field equations for the 

commutative Chern-Simons theory. 
 

 3. Results and Discussions 

To get a preliminary feeling for the non-perturbative theory, we have performed 

numerical simulation using the standard Metropolis algorithm impelemented in GNU-GCC, 

for the system described by (1) and have measured the action S and specific heat Cv of the 

system.  The code had been verified by reproducing the standard results for the scalar fields. 

Note that we have employed the relation Cv = < S2> - <S>2. We have also taken a sample size 

of 8192 and varied the noncommutativity parameter θ for various values of N ranging from 2 

to 10. However, here we have only plotted the values N=4, 6, 8 in the accompanying figures, 

though the pattern is similar for other values of N. The results point to the fact that for small 

values of θ, both the action and the specific heat of the system is zero, which is similar to its 

commutative analogue whose on-shell action should be zero and the same for the specific 
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heat. Though it might appear weird that the action is picking up both positive and negative 

values – this is not unnatural as the action contains only the odd powers of the covariant 

derivative of D. Also one should remember that the commutative version of the Chern-

Simons action is a first order action and thus bound to suffer from these problems.  This is 

verified by noting that the fluctuation in S occurs is both directions.  
 

 

FIGURE 1: Action S vs.θ  for N=4. 

 

 

FIGURE 2. Cv vsθ   for N=4. 
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FIGURE 3. The Action S vs θ and the specific heat Cv vs  θ graph for N=6. 

 

 

FIGURE 4. The Action S vs θ and the specific heat Cv vs  θ graph for N=8. 

 

It is interesting to check whether the uncertainty in the values of the action has to do 

with the noncommutativity of the underlying geometry. The increment of the fluctuation in 

both the action and the specific heat increasing theta seems to point to this fact. Whether this 

is indeed the case can be clarified by performing similar simulation on the compact 

geometries like the fuzzy torus and also simulating topologically massive gauge theories. We 

hope to report on these in the near future.  
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