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Abstract 
The theory of external symmetry in curved spacetimes we have proposed few years ago allows us to 
correctly define the operators of the quantum field theory on curved backgrounds. Particularly, 
despite of some doubts appeared in literature, we have shown that a well-defined energy operator 
can be considered on the de Sitter manifold. With its help new quantum modes were obtained for 
the scalar, Dirac and vector fields on the de Sitter spacetimes. A short review of these results is 
presented in this report. 
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1. Introduction 

In general relativity [1 - 3] the development of the quantum field theory in curved 

spacetimes [4] give rise to many difficult problems related to the physical interpretation of the 

one-particle quantum modes that may indicate how the quantum fields can be quantized. This 

is because the form and the properties of the particular solutions of the free field equations [5 

- 9] are strongly dependent on the procedure of separation of variables and, implicitly, on the 

choice of the local chart (natural frame). Moreover, when the fields have spin the situation is 

more complicated since then the field equations and, therefore, the form of their particular 

solutions depend, in addition, on the tetrad gauge in which one works [10, 1]. Under such 

circumstances it would be helpful to use the traditional method of the quantum theory in flat 

spacetime based on the complete sets of commuting operators that determine the quantum 

modes as common eigenstates and give physical meaning to the constants of the separation of 

variables which are just the eigenvalues of these operators. 

A good step in this direction could be to proceed like in special relativity looking for the 

generators of the geometric symmetries similar to the familiar momentum, angular 

momentum and spin operators of the Poincaré covariant field theories [11]. However, the 

relativistic covariance in the sense of general relativity is too general to play the same role as 

 9



the Lorentz or Poincaré covariance in special relativity. In its turn the tetrad gauge invariance 

of the theories with spin represents another kind of general symmetry that is not able to 

produce itself conserved quantities [1]. Therefore, one must focus only on the isometry 

transformations that point out the specific spacetime symmetry related to the presence of the 

Killing vectors [1, 3, 12]. 

Our approach is a general theory of tetrad gauge invariant fields defined on curved 

spacetimes with given external symmetries. This predicts how must transform these fields 

under isometries in order to leave invariant the form of the field equations and to obtain the 

general form of the generators of these transformations. The basic idea is that the isometries 

transformations must preserve the position of the local frames with respect to the natural one. 

Such transformations can be constructed as isometries  combined with suitable tetrad gauge 

transformations necessary for keeping unchanged the tetrad field components. In this way we 

obtain the external symmetry group showing that it is locally isomorphic with the isometry 

group. 

Furthermore, we show how can be used these results for finding the quantum modes of 

the Dirac field on dS spacetimes. For quantizing the Dirac field it is convenient to chose the 

moving charts with Cartesian coordinates where we can identify the components of the 

momentum operator and normalize the fundamental solutions using the momentum 

representation [20]. Obviously, to this end our theory of external symmetry is crucial since 

this gives us the main operators we need as generators of the spinor or vector representations. 

 

2. Relativistic covariance 

In the Lagrangian field theory in curved spacetimes the relativistic covariant equations 

of scalar, vector or tensor fields arise from actions that are invariant under general coordinate 

transformations. Moreover, when the fields have spin in the sense of the  symmetry 

then the action must be invariant under tetrad gauge transformations [10]. 

)(2,CSL

 

2. 1. Gauge transformations 

Let us consider the curved spacetime M  and a local chart (natural frame) of 

coordinates . Given a gauge, we denote by  the tetrad fields that define 

the local (unholonomic) frames, in each point 

0,1,2,3=, µµx )(ˆ xeµ

x , and by  those defining the 

corresponding coframes. These fields have the usual properties  , , 

)(ˆ ˆ xeµ

µ
ν

α
ν

µ
α δ ˆ

ˆˆ
ˆ =ˆ ee β

α
β
µ

µ
α δ=ˆ ˆ
ˆ ee
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νµνµ η ˆˆˆˆ =ee ⋅  and , where νµνµ η ˆˆˆˆ =ˆˆ ee ⋅ =η diag 1)1,1,(1, −−−  is the Minkowski metric. From 

the line element:  

,)(=ˆˆ= ˆˆ
ˆˆ

2 νµ
µν

νµ
νµη dxdxxgxdxdds   (1) 

expressed in terms of 1-forms, , we get the components of the metric tensor of 

the natural frame,  and . These raise or lower the natural vector 

indices, i.e., the Greek ones ranging from 0 to 3, while for the local vector indices, denoted by 

hat Greeks and having the same range, we must use the Minkowski metric. The local 

derivatives  satisfy the commutation rules  

defining the Cartan coefficients which help us to write the conecttion components in local 

frames as  

νµ
ν

µ dxexd ˆˆ ˆ=ˆ

β
ν

α
µβαµν η ˆˆ

ˆˆ
ˆˆ= eeg ν

β
µ
α

βαµν η ˆˆ
ˆˆ= eeg

µ
µ

νν ∂∂ ˆˆ =ˆ e σ
σ
νµσ

σ
αβ

σ
βα

β
ν

α
µνµ ˆ

ˆ 
ˆˆˆ

ˆ
,

ˆ
,ˆˆˆˆ

ˆ=ˆ)ˆˆ(=]ˆ,ˆ[ ∂∂−∂∂ ⋅⋅
⋅Ceeee

.)(
2
1=)ˆˆ(=ˆ

ˆˆˆˆˆˆˆˆˆ

ˆˆˆ
,

ˆ
ˆˆ

ˆ
ˆˆ µνλνµλλνµ

λσσ
αβ

γ
αβ

σ
γ

β
ν

α
µ

σ
νµ η CCCeeee ++−ΓΓ  (2) 

The Minkowski metric νµη ˆˆ  remains invariant under the transformations of the gauge 

group of this metric, (3,1)=)( OG η . This has as subgroup the Lorentz group, , of the 

transformations 

↑
+L

)]([ ωAΛ  corresponding to the transformations )(2,)( CSLA ∈ω  through the 

canonical homomorphism [11]. In the standard covariant parametrization, with the real 

parameters , we have:  αββα ωω ˆˆˆˆ = −

,=)( ˆˆ
ˆˆ

2 βα
βαω

ω
Si

eA
−

  (3) 

where  are the covariant basis-generators of the  Lie algebra which satisfy:  
βα ˆˆS )(2,CSL

[ ] .)(=, ˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆ σµτντµσντνσµσντµτσνµ ηηηη SSSSiSS −+−  (4) 

For small values of  the matrix elements of the transformations  can be written as 

. 

βαω ˆˆ Λ

L++Λ ⋅
⋅

⋅
⋅

µ
ν

µ
ν

µ
ν ωδω ˆ

ˆ
ˆ

ˆ
ˆ
ˆ =)]([A

Now we assume that M  is orientable and time-orientable such that  can be 

considered as the gauge group of the Minkowski metric [3]. Then the fields with spin can be 

defined as in the case of the flat spacetime, with the help of the finite-dimensional  linear 

representations, 

↑
+L

ρ , of the  group [11]. In general, the fields )(2,CSL ρρψ VM →:  are defined 

over M  with values in the vector spaces  of the representations ρV ρ . In the following we 
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systematically use the bases of  labeled only by spinor or vector local indices defined with 

respect to the axes of the local frames given by the tetrad fields. 

ρV

The relativistic covariant field equations are derived from actions [10, 1],  

,|)(det=|,),(=],[ ˆ
4

µνρ
ρ
µρρ ψψψ ggDLgxdeS ∫  (5) 

depending on the matter fields, ρψ , and the components of the tetrad fields, e , which 

represent the gravitational degrees of freedom. The covariant derivatives,  

,ˆ)(
2

ˆ=ˆ= ˆ
ˆˆ

ˆ
ˆˆˆˆ

γ
βα

β
γα

ρ
µ

µ
α

ρ
α ρ Γ+∂ ⋅

⋅SiDeD   (6) 

assure the invariance of the whole theory under the tetrad gauge transformations,  

,)(ˆ)]([=)(ˆ)(ˆ ˆˆ
ˆ

ˆˆ xexAxexe β
µ

α
β

α
µ

α
µ

⋅
⋅

Λ′→  

,)()]([=)()( ˆ
ˆ

ˆˆˆ xexAxexe µ
β

β
α

µ
α

µ
α

⋅
⋅Λ′→  (7) 

,)()]([=)(' )( xxAxx ρρρ ψρψψ →  

determined by the mappings  the values of which are the local  

transformations 

)(2,: CSLMA → )(2,CSL

)]([)( xAxA ω≡ . These mappings can be organized as a group, , with 

respect to the multiplication  defined as 

G

  × )()(=))(( xAxAxAA ′×′ . The notation  stands 

for the mapping identity, 

Id

)(2,1=)( CSLxId ∈ , while  is the inverse of 1−A A , 

. 11 )]([=))(( −− xAxA

 

2. 2. Combined transformations 

The general coordinate transformations are automorphisms of M  which, in the passive 

mode, can be seen as changes of the local charts corresponding to the same domain of M  [3, 

12]. If x  and  are the coordinates of a point in two different charts then there is a mapping x′

φ  between these charts giving the coordinate transformation, )(= xxx φ′→ . These 

transformations form a group with respect to the composition of mappings, , defined as 

usual, i.e. 

o

)]([=))(( xx φφφφ ′′o . We denote this group by A , its identity map by  and the 

inverse mapping of 

id

φ  by . 1−φ

The automorphisms change all the components carrying natural indices including those 

of the tetrad fields [1] changing thus the positions of the local frames with respect to the 

natural ones. If we assume that the physical experiment makes reference to the axes of the 

local frame then we arrive to the necessity of introducing the combined transformations 

 12



denoted by ),( φA  and defined as gauge transformations, given by , followed by 

automorphisms, 

GA∈

A∈φ . In this new notation the pure gauge transformations will appear as 

 while the automorphisms will be denoted from now by ),( idA ),( φId . 

The effect of a combined transformation ),( φA  upon our basic fields, e,ρψ  and e  is ˆ

)(ˆ)(ˆ),()(),(= xexexexexxx ′′→′′→′→ φ  and )()]([=)()( xxAxx ρρρ ψρψψ ′′→  where e′  are 

the transformed tetrads of the components:  

,)()()]([=)]([ ˆ
ˆ

ˆˆ ν

µ
ν
β

β
α

µ
α

φφ
x

xxexAxe
∂

∂
Λ′ ⋅

⋅   (8) 

which determine the components of ê′  too. Thus we have written down the most general 

transformation laws that leave the action invariant in the sense that ],[=],'[ eSeS ρρ ψψ ′ . The 

field equations derived from S , written in local frames as 0=))(( xE ρρψ , covariantly 

transform according to the rule ))()](([=))(())(( xExAxExE ρρρρρρ ψρψψ ′′′→  since the 

operators  involve covariant derivatives [1]. ρE

The association among the transformations of the groups G  and A  must lead to a new 

group with a specific multiplication. In order to find how looks this new operation it is 

convenient to use the composition among the mappings A  and φ  (taken only in this order) 

giving new mappings, GA ∈φo , defined as )](x[=))(( AxA φφo . The calculation rules 

IdId =φo ,  and AidA =o )()(=)( φφφ ooo AAAA ×′×′  are obvious. With these ingredients 

we define the new multiplication ( )φφφφφ oo ′×′′′ ,)(=),(*),( AAAA . It is clear that now the 

identity is  while the inverse of a pair ),( idId ),( φA  reads . First of 

all we observe that the operation  is well-defined and represents the composition among the 

combined transformations since these can be expressed, according to their definition, as 

),(=),( 1111 −−−− φφφ oAA

 * 

),(*),(=),( idAIdA φφ . Furthermore, we can convince ourselves that if we perform 

successively two arbitrary combined transformations, ),( φA  and ),( φ′′A , then the resulting 

transformation is just ),(*),( φφ AA ′′ . This means that the combined transformations form a 

group with respect to the multiplication . It is not difficult to verify that this group, denoted 

by , is the semidirect product  where  is the invariant subgroup while 

*

G AGG &= G A  is an 

usual one. 

 

3. External symmetry 
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In general, the symmetry of any manifold M  is given by its isometry group whose 

transformations leave invariant the metric tensor in any chart. The scalar field transforms 

under isometries according to the standard scalar representation generated by the orbital 

generators related to the Killing vectors of M  [1, 3, 12]. In the following we present the 

generalization of this theory of symmetry to fields with spin, for which we have defined the  

external symmetry group and its representations [15]. 

 

3. 1. Isometries 

There are conjectures when several coordinate transformations, )(= xxx ξφ′→ , depend 

on  independent real parameters,  ( ), such that N aξ Ncba 1,2,...,=...,, 0=ξ  corresponds to 

the identity map, id=0=ξφ . The set of these mappings is a Lie group [23], , if they 

accomplish the composition rule 

GG ∈

),(= ξξξξ φφφ ′′ fo , where the functions  define 

the group multiplication. These must satisfy  and 

 where  are the parameters of the inverse mapping of 

GGGf →×:

aaa ff ξξξ =,0)(=)(0,

0=),(=),( 11 −− ξξξξ aa ff 1−ξ ξφ , 

. Moreover, the structure constants of  can be calculated as [24]  1
1 = −

− ξξ
φφ G

.),(),(=
0==| ξξξξ

ξξ
ξξ
ξξ

′
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
′∂∂
′∂

−
′∂∂
′∂

ab

c

ba

c

abc
ffc   (9) 

For small values of the group parameters the infinitesimal transformations, 

, are given by the vectors  whose components,  L++′→ )(= xkxxx a
a µµµµ ξ ak

,=
0=|ξ

µ
ξµ

ξ
φ

aak
∂
∂

  (10) 

satisfy the identities , resulting from Eq. (9). 0=,,
νν

µ
µν

µ
µ

cabcabba kckkkk +−

In the following we restrict ourselves to consider only the isometry transformations, 

)(= xx ξφ′ , which leave invariant the components of the metric tensor [1, 12], i.e.  

.)(=)( xg
x
x

x
xxg µνν

β

µ

α

αβ ∂
′∂

∂
′∂′   (11) 

These form the isometry group )(MIG ≡  which is the Lie group giving the symmetry 

of the spacetime M . We consider that this has  independent parameters and, therefore, 

, are independent Killing vectors (which satisfy 

N

Naka 1,2,...=, 0=;; µννµ aa kk + ). Then their 

corresponding Lie derivatives form a basis of the Lie algebra  of the group  [12]. )(Mi )(MI
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However, in practice we are interested to find the operators of the relativistic quantum 

theory related to these geometric objects which describe the symmetry of the background. For 

this reason we focus upon the operator-valued representations [25] of the group  and its 

algebra. The scalar field 

)(MI

CM →:ψ  transforms under isometries as 

)(=)]([)( xxx ψφψψ ξ′→ . This rule defines the representation ξξφ T→  of the group  

whose operators have the action 

)(MI

1== −′ ξξ φψψψ oT . Hereby it results that the operators of 

infinitesimal transformations, , depend on the basis-generators, 

 with , which are completely determined by the Killing vectors. We 

find that they obey the commutation rules , given by the structure constants 

of . In other words they form a basis of the operator-valued representation of the Lie 

algebra  in a carrier space of scalar fields. Notice that in the usual quantum mechanics 

the operators similar to the generators  are called often orbital generators. 

L+− a
a LiT ξξ 1=

µ
µ∂− aa ikL = Na 1,2,...,=

cabcba LicLL =],[

)(MI

)(Mi

aL

 

3. 2. The group of external symmetry 

It is natural to suppose that the good symmetry transformations we need are combined 

transformations in which the isometries are preceded by appropriate gauge transformations 

such that not only the form of the metric tensor should be conserved but the form of the tetrad 

field components too. Thus we arrive at the main point of our theory. We introduce the 

external symmetry transformations, ),( ξξ φA , as combined transformations involving 

isometries and corresponding gauge transformations necessary to preserve the gauge. We 

assume that in a fixed gauge, given by the tetrad fields  and ,  is defined by  e ê ξA

,)(
)(

)]([ˆ=)]([ ˆ
ˆˆ

ˆ xe
x

x
xexA ν

βν

µ
ξ

ξ
α
µ

α
βξ

φ
φ

∂
∂

Λ ⋅
⋅

  (12) 

with the supplementary condition )(2,1=)(0= CSLxA ∈ξ . Since ξφ  is an isometry Eq.(11) 

guarantees that  and, implicitly, ↑
+∈Λ LxA )]([ ξ )(2,)( CSLxA ∈ξ . Then the transformation laws 

of our fields are  

.)()]([=)(')(
,)]([ˆ=)(ˆ)(ˆ
,)]([=)()(
,)(=

:),(

xxAxx
xexexe
xexexe
xxx

A

ρξρρ

ξ

ξ

ξ

ξξ

ψρψψ
φ
φ
φ

φ

′→

′′→

′′→

′→

 (13) 
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The mean virtue of these transformations is that they leave invariant the form of the 

operators of the field equations, , in local frames. This is because the components of the 

tetrad fields and, consequently, the covariant derivatives in local frames, , do not change 

their form. 

ρE

ρ
µ̂D

For small  the covariant  parameters of aξ )(2,CSL )]([)( xAxA ξξ ω≡  can be written as 

 where, according to Eqs.(3) and (12), we have  L+Ω )(=)( ˆˆˆˆ xx a
a βαβα

ξ ξω

( ) .ˆˆ= ˆˆ
ˆ

ˆ
,,

ˆ

0=|

ˆˆ
ˆˆ βλν

λ
µα

µν
µ

ν
α
µ

ξ

βα
ξβα η

ξ
ω

ekeke aaaa +
∂

∂
≡Ω   (14) 

We must specify that these functions are antisymmetric if and only if  are Killing 

vectors. This indicates that the association among isometries and the gauge transformations 

defined by Eq.(12) is correct. 

ak

The transformations ),( ξξ φA  form a Lie group related to . Starting with Eq.(12) 

we find that 

)(MI

),(=)( ξξξξξ φ ′′ × fAAA o  and we obtain  

,),(=),(*),( ),(),( ξξξξξξξξ φφφ ′′′′ ffAAA   (15) 

and ),(=),( 0=0= idIdA ξξ φ . Thus we have shown that the pairs ),( ξξ φA  form a Lie group with 

respect to the operation . We say that this is the external symmetry group of  * M  and we 

denote it by . From Eq.(15) we understand that  is locally isomorphic with 

 and, therefore, the Lie algebra of , denoted by , is isomorphic with  

having the same structure constants. 

GMS ⊂)( )(MS

)(MI )(MS )(Ms )(Mi

 

3. 3. Representations 

The last of Eqs.(13) which gives the transformation law of the field ρψ  defines the 

operator-valued representation  of the group ,  ρ
ξξξ φ TA →),( )(MS

.)()]([=)]()[( xxAxT ρξξρ
ρ

ξ ψρφψ   (16) 

The mentioned invariance under these transformations of the operators of the field 

equations in local frames reads:  

.=)( 1
ρ

ρ
ξρ

ρ
ξ ETET −   (17) 

Since  we say that this representation is induced by the representation )(2,)( CSLxA ∈ξ

ρ  of  [25, 26]. As we have shown in Sec. 2. 2, if )(2,CSL ρ  is a vector or tensor 
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representation (having only integer spin components) then the effect of the transformation 

(16) upon the components carrying natural indices is due only to ξφ . 

The basis-generators of the representations of the Lie algebra  are the operators  )(Ms

,==
0=|

ρ

ξ

ρ
ξρ

ξ aaaa SL
T

iX +
∂
∂

  (18) 

which appear as sums among the orbital generators and the spin terms which have the action 

. This is determined by the form of the local  generators,  )()]([=))(( xxSxS aa ρρ
ρ ψρψ )(2,CSL

,)(
2
1=

)(
=)( ˆˆ

ˆˆ

0=|
βα

βα

ξ

ξ

ξ
Sx

xA
ixS aaa Ω

∂
∂

  (19) 

that depend on the functions (14). Furthermore we can verify the expected commutation rules 

. Thus we have derived the basis-generators of the operator-valued 

representation of  induced by the linear representation 

ρρρ
cabcba XicXX =],[

)(Ms ρ  of . All the operators 

of this representation commute with the operator  since, according to Eqs. (17) and (18), 

we have  for all . Therefore, for defining quantum modes we can 

use the set of commuting operators containing the Casimir operators of , the operators 

of its Cartan subalgebra and . 

)(2,CSL

ρE

0=],[ ρ
ρ aXE Na 1,2,...,=

)(Ms

ρE

Finally, we must specify that the basis-generators (18) of the representations of the 

 algebra can be written in covariant form as:  )(Ms

,)(
2
1= ˆˆ

ˆˆ;
βαν

β
µ
ανµ

ρ
µ

µρ ρ SeekDikX aaa +−   (20) 

generalizing thus the important result obtained in Ref. [14] for the Dirac field. 

 

4. Observables on de Sitter spacetime 

Let  be the de Sitter (dS) spacetime defined as a hyperboloid of radius ),( gM ω1/=R  

in the  - dimensional flat spacetime, 4)(1+ ),( 55 ηM , of coordinates , 

and metric 

0,1,2,3,5=,...,, BAz A

1)1,1,1,(1,d=5 −−−−iagη . The hyperboloid equation,  

.||3/=1/=,= 2
5 c

BA
AB RRzz Λ− ωη   (21) 

shows that this manifold is the homogeneous space of the pseudo-orthogonal group . 

This group is in the same time the gauge group of the metric 

(4,1)SO

η5  and the isometry group of the 

dS spacetime, (1,4)=)(=][5 SOMIG η . For this reason it is convenient to use the covariant 
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real parameters  since in this case the orbital basis-generators of the 

representation of , carried by the space of the scalar functions over 

BAAB ωω 55 = −

(4,1)SO 5M , have the 

standard form:  

[ ].= 555 A
C

BCB
C

ACAB zziL ∂−∂ ηη   (22) 

 They will give us directly the orbital basis-generators  of the scalar 

representations of . Indeed, starting with the functions  that solve the equation 

(21) in a given chart , one can write down the operators (22) as , 

finding thus the orbital generators  and implicitly the components  of the Killing 

vectors associated to the parameters  [15]. Furthermore, one has to calculate the spin 

parts , according to Eqs. (19) and (14), arriving to the final form of the basis-generators 

)(5 ABL

)(MI )(xZ A

}{x µ
µ ∂− )()(5 == ABABAB ikLL

)( ABL )()( xk AB
µ

ABω5

)( ABS

)(= )()()( ABABAB SLX ρ+  of any representation ρ  of . )(MS

 

4. 1. Static and moving charts 

On M there are many static charts for which the time-like Killing vector field 
st

i∂  

depends on the static time . We denote by st },{ ss xt r  the chart with Cartesian coordinates 

associated to the chart },,,{ φθss rt  with spherical coordinates and the conformal spherical line 

element:  

,) sin( sinh
1

cosh
1= 2222

2
22

2
2

⎥⎦
⎤

⎢⎣
⎡ +−− φθθω

ωω
ddrdrdt

r
ds sss

s

 (23) 

Another type of static charts with Cartesian coordinates, , or spherical 

ones,

}ˆ,{ ss xt
r

},,ˆ,{ φθss rt , have the line element:  

,) sin(ˆ
ˆ1

ˆ
)ˆ(1= 2222

22

2
2222 φθθ

ω
ω ddr

r
rddtrds s

s

s
ss +−

−
−−  (24) 

with a finite event horizon at 1=ŝrω . The radial coordinates of these two types of charts are 

related through Ss rr ωω tanh=ˆ . 

The principal moving charts of physical interest with Cartesian, , or spherical 

coordinates, 

},{ xt r

},,,{ φθrt  have FRW line elements as:  

.= 2222 xdedtds t rω−   (25) 
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The time  of this chart is interpreted as the proper time of an observer at ),( ∞−∞∈t

0=xr . Another moving chart which play here a special role is the chart  with the 

conformal time  and Cartesian spaces coordinates . This chart covers only a half of the 

manifold 

},{ xtc
r

ct
ix

M , for 0),(−∞∈ct  and . Nevertheless, it has the advantage of a simple 

conformal flat line element [4],  

3RDx ≡∈
r

( .1= 22
22

2 xddt
t

ds c
c

r
−

ω
)   (26) 

Moreover, the conformal time  is related to the proper time  through  ct t

.= t
c et ωω −−   (27) 

The coordinates of the static and moving charts are related by  

( ) .=ˆ,
1
1ln

2
1=,1ln

2
1= 222 t

st

t

s
t

s rer
re
rerertt ω

ω

ω
ω

ω
ω

ω
ω

ω −
+

−−  (28) 

 

4. 2. The  basis generators (4,1)so

The next step is to calculate the basis-generators  of any representation )( ABX ρ  of 

. However they have different forms which depend on the chart and the gauge we use. 

Here we restrict ourselves to consider the moving charts and the diagonal Cartesian gauge in 

the chart  for which the non-vanishing tetrad components are [8]: 

)(MS

},{ xtc
r

.1=ˆ,1=ˆ,=,= 0
0

0
0

c

i
j

i
j

c
c

i
j

i
jc t

e
t

etete
ω

δ
ω

ωδω −−−−  (29) 

The group  includes the subgroup  which is just the 

isometry group of the 3-dimensional Euclidean space of our moving charts,  and 

, formed by 

(4,1)SO (3)(3)=(3) SOTE &

*},{ xtc
r

*},{ xt r 3R  translations, , and proper rotations,  with 

 [11]. Therefore, the basis-generators of its universal covering group, 

iii axx +→ ji
j

i xRx ⋅
⋅→

(3)SOR∈

)((2)(3)=(3)~ MSSUTE ⊂& , can be interpreted as the components of the momentum, P
r

, 

and total angular momentum, , operators. The problem of the Hamiltonian (or energy) 

operator seems to be more complicated, but we know that in the mentioned static central 

charts with the static time  this is 

J
r

st st
iXH ∂== (05)ω  [15]. Thus the Hamiltonian operator and 

the components of the momentum and total angular momentum operators ( iP  and 
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/2= jkijk
i JJ ε  respectively) can be identified as being the following basis-generators of the 

representation ρ  of  )(MS

)(=(05) i
i

ctc xtiXH ∂+∂−≡ ωω   (30) 

( ) iii
i iXXP ∂−−≡ =)(0)(5ω  (31) 

)()(=)( iji
j

j
i

ijij SxxiXJ ρ+∂−∂−≡  (32) 

after which one remains with the three basis-generators  

,))()((22)(= 0
22

)(0)(5
j

ijci
ii

cii
i xStSHxPrtXXN ρρωω +++−+≡  (33) 

which do not have an immediate physical significance. The  transformations 

corresponding to these basis-generators and the associated isometries of the chart  are 

briefly presented in Appendix A. 

(4,1)SO

*},{ xtc
r

Starting with above basis-generators, new operators can be constructed according to our 

physical needs. Thus one sefines the helicity operator:  

PSPJW
rrrr

⋅⋅ )(== ρ   (34) 

which is analogous to the time-like component of the four-component Pauli-Lubanski 

operator of the Poincaré algebra [11]. 

In the other moving local chart, },{ xt r , we have the same operators P
r

 and )(= SLJ
rrr

ρ+  

(with ) whose components are the PxL
rrr

×= (3)~E  generators, while the Hamiltonian operator 

takes the form: 

,= PxiH t

rr
⋅+∂ ω   (35) 

where the second term, due to the external gravitational field, leads to the commutation rules:  

.=],[ ii PiPH ω   (36) 

We observe that in this chart the operators  are the analogous of the basis-

generators of the Lorentz boosts of  since in the limit of 

)(0i
i XK ≡

)(2,CSL 0→ω , when ()  equals the 

Minkowski line element, the operators  and ii JPPH ,,= 0 iK  become the generators of the 

representation ρ  of the group )(2,(4) CSLT ⊗  (i.e. the universal covering group of the 

Poincaré group [11, 19]). 

 

4. 3. The problem of the energy operator 
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The Hamiltonian operator we defined above is related to the Killing vector  which 

can be spice-like in some domains of the dS manifold. For this reasons there are some doubts 

appeared in literature [27] concerning the existence of the operator 

(05)k

H . We must specify that 

this is not an impediment since H  has to make sense only inside the light-cones where it is 

always time-like. In other words, the energy is well-defined wherever an observer can do 

physical measurements. In the next table we show that the Killing vector  is time-like 

obeying  inside the light-cones of the charts we use. 

(05)k

0>),( (05)(05)
2
(05) kkgk ≡

chart }ˆ,{ ss xt
r

 },{ ss xt r  },{ xt r  },{ xtc
r  

     

light-cone ..1)<ˆ( hesrω  |<| ss tr  1<treωω  γ
ω

+−≥
1

ct  

     

(05)k  ,0,0,0)1(
ω

−  ,0,0,0)1(
ω

−  ),,,1( 321 xxx
ω

− ),,,( 321 xxxtc  

     

0>2
(05)k  0>ˆ1 22

srω−  0>sr  0>1 22
2

ter ω

ω
− 0>22 rtc −  

 

Hereby we see that the Killing vector  is time-like inside the light-cone of any given 

chart such that the energy operator 

(05)k

H  is well-defined on the entire domain where an observer 

can measure physical events. 

Thus the general conclusion is that the quantum observables we defined on dS space-

time are correct. 
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