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Micromagnetic simulations have recommended themselves as a useful tool to predict 

the hysteresis properties of magnetic materials in relation to their intrinsic and extrinsic 

parameters.  These simulations represent in our days a necessary complimentary tool for 

experimental characterization of extrinsic properties of magnetic materials, since they provide 

information at temporal and spatial scales not accessible experimentally. Recently the 

micromagnetic simulations have gained a special importance in relation to the study of static 

and dynamic magnetisation behaviour in lithographed magnetic nanoelements such as 

magnetic dots, stripes, wires etc. Additionally in our days they provide a method for the 

magnetic media design, for example, for the optimisation of the magnetic recording media. 

 The principles of micromagnetics are due to W.F.Brown [1] who derived the 

micromagnetic equations for the equilibrium properties. The classical (zero-temperature) 

micromagnetics is a semi-classical approach that considers the magnetisation M(r) as a vector 

function of spatial coordinates with constant module Ms. This implies a continuum 

approximation that ignores any discrete effect. The magnitude Ms is the saturation 

magnetisation and is defined as a density of magnetic moments (per unit volume of the 

material). It is useful to work with the unit magnetisation vector m(r)=M(r)/Ms. The 

micromagnetic method consists in discretizing the magnetic film in finite differences or finite 

elements, writing the energy contribution of each magnetic discretization unit, and 

minimizing the total energy of the system. The total energy comprises the contributions of 

exchange, anisotropy, Zeeman and magnetostatic energy terms (sgsm units are used): 
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where A is the micromagnetic exchange parameter, 
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where K is the macroscopic anisotropy  parameter, 
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where Hext is the external applied field, 

dVE demag
V

demag r))r))r))r))r)Hr)Hr)Hr)H(M(M(M(M ((∫−= ,       (5) 

where Hdemag is the demagnetisation field.  

 

The micromagnetism poses particular emphasis on the exact calculation of the 

demagnetizing field. In the continuous micromagnetic approach it is described by the 

Maxwell equation in the absence of currents 0=×∇ demagHHHH  and, therefore, there exists a 

potential called scalar magnetostatic potential which satisfies: 

magdemag U−∇=HHHH .         (6) 

 

This potential satisfies the Laplace equation outside the material and the Poisson one 

inside the material: 
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where n is the unit vector normal to the surface of the ferromagnetic sample. The sources of 

the magnetostatic field are called magnetostatic charges. The surface magnetostatic charge is 

defined as nnnnMMMM ⋅=σ  and the volume charge as MMMM⋅−∇=ρ . The magnetostatic energy integral 

extends to all the space, not only the ferromagnetic body, and the minimization of the 

magnetostatic energy will seek the reduction of the field outside the ferromagnetic body. This 

can be achieved by reduction of the magnetic charges and that fact is known as the pole 

avoidance principle. This gives origin to domains and magnetization inhomogeneities such as 

the ripple structure. 

 In micromagnetic calculations most of computational time is spent in the evaluation of 

the magnetostatic field. This interaction is non-local and long-ranged. In the dipole-dipole 
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approximation the field is a sum of 3N elements, where N is the number of individual 

moments. The direct evaluation of the magnetostatic field scales as (2N)
2
 and represents too 

much computational effort. Due to this reason, several advanced methods is currently used for 

the magnetostatic energy evaluation: Fast Fourier Transform (FFT) [2], finite 

element/boundary element (FEM/BEM) [3], fast multipole method (FMM)[4] and the 

dynamic alternative direction implicit (DADI) method [5]. 

The solution of the variational problem (1) satisfies the Brown condition of 

equilibrium: 
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Meaning that in the equilibrium the magnetisation is parallel to the total effective field  
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It is often convenient to define the anisotropy field HK=2K/Ms and normalize all the 

fields to this parameter. 

In numerical approaches we divide or discretize the sample by the discretization 

length ∆�considering a constant magnetisation inside each element. There are two physically 

relevant parameters that we need to take into account in order to select the size of 

discretization length ∆: 

The domain wall-width parameter (defining the width of the Bloch wall, found in hard 

magnetic materials): 

K

A
w πδ =           (13) 

and the exchange correlation length (defining the Néel domain wall width typical for soft 

magnetic materials) 
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In order to describe correctly the domain wall the discretization length must be less 

than its width but include enough atoms to ensure the continuum approximation. 

The energy (1) could be directly minimized using, for example, the conjugate-gradient 

method. However, it has become custom to use the integration of the dynamical equation of 
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motion as the minimization procedure. The dynamics is described by the Landau-Lifshitz-

Gilbert (LLG) equation: 
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where i is the discretization element indez, α is the damping parameter (which represents a 

phenomenological relaxational mechanism) and γ is the gyromagnetic factor.  The damping 

parameter is normally in the range α=0.01. Numerical integration of  Eq.(15) provides a 

dynamical information, including the magnetisation precession around the total magnetic 

field. 

Alternatively for the energy minimization procedure one can use large values α=1.0. 

In our days there exist several commercial and publicly available micromagnetic codes. 

Among the public codes the most used are the following: 

OOMMF (object-oriented micromagnetic framework). This code is a public domain 

micromagnetic program developed at the National Institute of Standards and Technology 

(NIST), USA. The code uses finite-difference discretization and FFT for magnetostatic field 

calculations. It can run under both Unix and Windows platforms. 

Visit: http://math.nist.gov/oommf/ 

MAGPAR: finite-element micromagnetic code with FEM/BEM method to calculate 

magnetostatic fields, created by Vienna University of Technology and Werner Scholtz. Works 

under Linux platform. 

Visit: http://magnet.atp.tuwien.ac.at/ 

NMAG: micromagnetic simulation package based on finite elements created by H.Fanghor 

(University of Southampton, UK), finite-element based.  

Visit: http://nmag.soton.ac.uk/nmag 

 

The present tutorial will be based on the OOMMF code. We will give a quick 

overview of the oommf possibilities. Several examples will be considered: 

We will aim at micromagnetic modelling of a permalloy magnetic nano-sized dot. We 

will calculate several dynamical problems: (i) the magnetization precession around constant 

field from which we will evaluate the precessional frequency and (ii) the magnetisation 

switching under external applied field. Finally we will calculate the magnetisation 

configuration in the form of a vortex structure (see Figure below). 
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Fig.1 Minimum magnetic configuration in the form of magnetic vortex in a permalloy disc 

obtained by oommf simulation. 
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