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In this lecture we will discuss different timescales in the magnetisation dynamics 

starting from femto-second ultra-fast demagnetisation and ending with long-time thermal 

stability (up to years).  In the intermediate timescale the thermal magnetisation dynamics 

(nanoseconds) and the magnetic viscosity problem (seconds) will be described. We will 

outline relevant thermal and dissipation mechanisms and numerical models which could allow 

evaluation of the magnetisation dynamics at each timescale (see Fig.1).  The necessity of 

multi-scale approaches [1] will be stressed. 

 

 

Fig.1  Different timescales for the magnetisation dynamics including typical measurements 

techniques and corresponding numerical methods. 
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 We will start with short-time magnetisation dynamics. This first will be considered 

in relation to the classical problem of the ferromagnetic resonance (FMR) [2].  For the FMR 

problem we will discuss main energy relaxation processes such as spin-phonon, spin-impurity 

and spin-spin relaxation channels.  The magnetisation dynamics is typically described in 

terms of the precessional equation of motion with Landau-Lifshitz (LL) phenomenological 

dissipation term : 
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or the Gilbert damping term: 
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where M
r

 is the magnetisation vector satisfying 22

sMM =  (saturation magnetisation value) 

and H
r

 is the effective magnetic field containing Zeeman, exchange, anisotropy and 

magnetostatic contributions. The two equations are mathematically equivalent provided that 

the parameters are renormalized: 
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The Gilbert form of the damping is known to give more physically reasonable results 

in terms of the dependence of the relaxation time on the damping parameter.   The Gilbert 

equation transformed into the LL equation form is known as the Landau-Lifshitz-Gilbert 

(LLG) equation and is the most widely used model.   An alternative macrospin approach 

historically used for nuclear and electron paramagnetic resonance is the Bloch-Bloembergen 

damping: 
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where T1 and T2 are the longitudinal and transverse characteristic relaxation times. 

 We will discuss the phenomenological character of the damping term and show 

several examples when its form can be justified.   
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 Thermal fluctuations have been introduced to the magnetisation dynamics by 

W.F.Brown [3] for a collection of small non-interacting magnetic particles based on two 

approaches (i) the fluctuation-dissipation theorem and (ii) the Fokker-Plank (FP) equation.  

For a generalization to the system of interacting magnetic moments (and thermal 

micromagnetics) see Ref.[4].   The approach (known as the Langevin dynamics) consists of 

adding an additional random fluctuation term with the properties consistent with the 

thermodynamic equilibrium. Both the fluctuation-dissipation theorem and the requirement of 

the equilibrium Boltzman solution to the FP equation give the following properties of the 

random noise term (white noise) in Eq.(1) for field components and different atomic sites: 
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Here ∆t is the integration time step. The white-noise properties of Eq.(5) effectively 

mean the separation of timescales, i.e. it assumes that spin dynamics is slower than the 

corresponding phonon and electron dynamics, whose role is to produce a thermal bath.  

On the atomistic level (Heisenberg model) the thermal equation (1) with (5) correctly 

describes the Curie temperature. However, on the micromagnetic level this approach is not 

correct (see Fig.2). This happens due to the fact that the Curie temperature is defined by short 

wavelength spinwaves which are cut in the micromagnetic approach.  

 

 

 

Fig.2  Numerical modelling results for magnetisation versus temperature using the Langevin 

dynamics: (left) from Ref.[1]: Atomistic model for FePt, showing the correct Curie 

temperature (right) from Ref.[5]: Micromagnetic model (unrenormalized). The 

renormalization group approach is suggested in this article to correct for the Curie 

temperature. 
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A more thermodynamically consistent approach is the Landau-Lifshitz-Bloch (LLB) 

micromagnetic equation, derived by D.Garanin [6] within mean field approximation (MFA) 

from the classical Fokker-Planck equation for atomistic spins interacting with a heat bath and 

from the corresponding density-matrix in the quantum case. The macrospin LLB equation has 

been shown to be a valid micromagnetic equation at all temperatures, even above Tc [7]. We 

write the LLB equation as follows: 
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Here 
th

sm
rr

= is the thermally averaged spin polarisation, the total effective field if given by 

the external, anisotropy, exchange fields and entropy correction, respectively: 













>







−−

<−

++++=
⊥

c

cs

c

s

exchyyxxexteff

TTmm
T

TJ

TTm
m

m

HememHH
r

r

rrrrr

20

2

2

5

3
1

1
2

1

1

µ

χ

χ

)(

)(
||

 

||,χχ⊥ are perpendicular and longitudinal susceptibilities; the longitudinal and transverse 

damping parameters are temperature dependent )/(/|| cc TTTT 3132 −== ⊥ λαλα  for T<Tc 

and ||αα =
⊥

 for T>Tc , λ �is the atomistic coupling-to the bath constant, Jo is the zero-

Fourier component of the exchange integral and µs is the atomic moment . The thermal fields 

have the following properties: 
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Fig.3  Longitudinal and transverse relaxation time as a function of temperature modelled 

within atomistic approach (symbols) and one  macrospin LLB equation (line) from Ref.[7] 
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 In the ultra-short timescale (femto-pico seconds) the dynamics is governed by the 

non-equilibrium electron, phonon and spin dynamics and the energy transfer (scattering 

processes) between different subsystems.  The electron and phonon dynamics should be 

considered explicitly and is normally described in terms of the two-temperature (2T) model 

[9].   

 

Fig.4 The two-temperature model (left) and the dynamics of the electron Te  and phonon Tl  

temperatures: The parameters are the following Ce and Cl are electron and phonon specific 

heats Gel – electron-phonon coupling constant, the function P(t) describes the laser pulse. 

 

During the laser-induced ultra-fast magnetisation dynamics the temperature is 

increased up to and even above Tc.  The magnetisation dynamics could be coupled in the 

atomistic approach (or using the micromagnetic LLB equation (iii)) to the electron 

temperature Te in the 2T model. This gives results in agreement with the experiment [9] (see 

Fig. 5) 

 

 

 

 

 

 

 

 

 

 

Fig. 5. Atomistic modelling of spin dynamics at the femto and pico-second timescale, for two 

laser pump fluencies, showing femto-second demagnetisation and pico-second magnetisation 

recovery (from Ref.[1]). 
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However at the femtosecond timescale the assumption of the separation of timescales 

for the white-noise approximation (5) may be violated. For this case we suggested the use of 

the Miazaki-Seki approach [10] which takes into account the correlated noise and avoids the 

application of the fluctuation-dissipation theorem directly to the spin system. 

Finally, we will describe the problem of long-time magnetisation dynamics, related 

to magnetic viscosity measurements and long-time thermal stability. The long-time thermal 

decay occurs due to the possibility to overcome thermally energy barriers in magnetic 

systems. The probability is given by the Arrenius-Neél formula: 

( )TkEff B/exp ∆−= 0         (8) 

 

Where f0 is the temperature, field, etc.-dependent reversal frequency, ∆E is the energy 

barrier (normally also temperature dependent), kB is the Boltzaman constant and T is the 

temperature. Thus, the most important part for the evaluation of the long-time thermal decay 

is the evaluation of energy barriers. At relatively low temperatures the temperature 

dependence of the energy barriers can be taken into account by temperature dependent 

parameters such as anisotropy and magnetisation with subsequent zero-temperature energy 

barrier evaluation. We will start with a well-known model of uniform energy barrier 

distribution and show that this leads to a widely measured logarithmic magnetisation decay . 

As a first model to evaluate energy barriers in slightly interacting system we will consider the 

Pfeiffer approximation for energy barriers evaluation [11] and to evaluate the magnetisation 

dynamics – the kinetic Monte Carlo approach [12].  

 

Fig. 6. (from Ref. [14]) Energy barrier distributions (normalized to average energy barrier in 

the non-interacting case) for magnetostatically interacting Co nanoparticles with different 

concentrations c (left) and the evaluated magnetisation decay (right). 
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However, generally speaking the magnetisation dynamics occurs in a complex 

magnetisation landscape and the evaluation of energy barriers should be done numerically in 

a multidimensional space. We will discuss the problem of energy barriers evaluation in 

magnetic systems and give several examples of energy barrier evaluation in magnetic 

nanoelements [13] and energy barrier distributions in systems of interacting nanoparticles 

[14], see Fig.6.  

Finally, we will end with a full method to evaluate long-time magnetisation dynamics 

for completely interacting systems, based on a combined Metropolis-kinetic Monte Carlo 

approaches with multidimensional energy barrier evaluation [14].  
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