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The starting point of the mean-field approach to ferromagnetism is a suitable theory of 

paramagnetism yielding a magnetic equation of state of a paramagnet, M(H,T), in explicit 

form, 
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where f(x) is a known function. Its argument x is Langevin's dimensionless ratio of the 

magnetic and thermal energies. The quantity µ , called magnetic moment, is of the order of 

several Bohr magnetons. The mean-field approximation consists in turning from the 

description of paramagnetism to ferromagnetism by augmenting the external magnetic field H 

in Eq. (2) with Weiss's molecular field, proportional to the magnetisation: 

 

 H H Mγ→ + .         (3) 

 

The factor γ is known as the molecular field constant. The underlying microscopic 

mechanism is the exchange interaction. 

It can be readily appreciated that a new magnetic equation of state has arisen. It can be 

expressed either in an implicit form,   
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or parametrically, either as 
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or alternatively as 

 
0

0

( )

( )             

kT
H x M f x

M M f x

γ
µ


= −


 =

        (6) 

 

The running parameter in the above expressions is Langevin's ratio, 0 < x < ∞. 

Equations (5) and (6) are convenient for generating M-vs-T  and M-vs-H  plots. 

For a detailed development of the theory the function f(x) has to be specified. From 

general principles it is clear that f(x) must be an odd function, f(–x) = –f(x). This follows from 

the fact that both M and H change sign under time inversion. Furthermore, the magnetisation 

cannot grow without limit in high fields; there must be an upper bound to it. Usually f(x) is 

defined so that f(x)→1 as x→∞. Then the prefactor  M0 in Eqs. (2, 4-6) has the meaning of 

saturation magnetisation. 

 The main two paradigms in magnetism are the localised and the itinerant (band) 

models. In the localised approach f(x) is the Brillouin function, 
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The argument x is defined by Eqs. (2, 3) with 
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For itinerant magnets with a single rectangular band f(x) is given by 
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Here Λ is a material constant defined by 
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where I is the Stoner integral and D(EF) is the density of states at the Fermi level. According 

to the Stoner criterion, for ferromagnets ID(EF) > 1; therefore, 0 < Λ < 1. This quantity is a 

measure of the degree of localisation. For example, nickel can be regarded as a half-localised 

magnet, because it has Λ ≈ 0.5. The limiting case Λ→1 corresponds to full localisation; Eq. 

(9) then becomes 

 ( ) tanhf x x= .                    (12) 

 

This is a special case of J = 1/2 in Eq. (7), describing a system of atoms with one 

unpaired electron. 

 

The main predictions of the mean-field theory: 

●  In the absence of a magnetic field the magnetisation is nil at T > TC.  At T < TC the stable 

solution is non-trivial and corresponds to spontaneous magnetisation. The Curie temperature 

is given by 
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●  On approach to the Curie point from below the spontaneous magnetisation depends on 

temperature as follows: 
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●  Well above the Curie point the susceptibility complies with the Curie-Weiss law, 
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where 
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●  At low temperature, T << TC, the spontaneous magnetisation tends to saturation. The 

approach to saturation is exponentially rapid, M0 − M ∝ exp(−T0/T), where T0 ~ TC. 

(Depending on the assumed f(x), the asymptotic expression may also contain a power 
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prefactor.) This prediction of the mean-field theory is at variance with experiment. The 

correct low-temperature behaviour, M0 − M ∝ T
3/2

, is obtained in the spin-wave theory. 

 

●  The specific heat is predicted to have a finite discontinuity at T = TC: 
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where N = M0/µ  is the number of spins. Note that f'''(0) < 0, therefore, ∆C < 0. 
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