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The goal of theory is to make things as simple as possible, but no simpler. attr. A. Einstein 

 

At the start of a School on ‘Models in Magnetism’, it is necessary to fix some of the basic 

concepts. We are concerned with magnetism in solids, so we need to have a some idea of what is 

is, and how it arises.  

 

The beginnings. 

A basic relation, discovered by Oersted in 1821, is the connection between magnetism and 

electric currents. His discovery triggered the electromagnetic revolution which led to the 

electrification of the planet. It resolved the age old puzzle regarding the analogy between 

electrostatic and magnetic forces. Ampere then found that a magnet behaves like a current-carrying 

coil. The relation between a current loop of area A carrying a current I and the equivalent magnetic 

moment m is  

     m = IA       (1) 

This truth is nicely enshrined in our  preferred system of units. Magnetic moment is 

measured in A m
-1

. More generally, the relation between magnetic moment and current density j is 

m = (1/2)∫ r × j(r) d
3
r. 

 

Magnetization 

The next step is to define magnetization M in a volume ∆V as ∆m/∆V. We need to think 

carefully about the volume. If we choose it to be too small, we run into wild spatial and temporal 

fluctuations as we approach the atomic scale. If we choose it to be too big, we risk missing the 

sponateous magnetization in domains. A good choice is the mesoscopic scale, or the continuum 

approximation of magnetostatics. Magnetization can be induced by a magnetic field in a 
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paramagnet or diamagnet, or it can arise spontaneously in a magnetically ordered material like 

cobalt or magnetite. The relation between magnetization and current density is  

jM = ∇∇∇∇ × M       (2) 

 

Magnetic fields 

Magnetic fields are created by electric currents. The field in free space created by a current element 

Idl  is given by the  Biot-Savart law; 

 δB = -(µ0/4π) I(r × dl)/r
3
     (3) 

Here we have chosen to use the B-field, which is measured in Tesla. The constant µ0 which 

appears in the equation is defined to be exactly 4π 10
-7

 TmA
-1

.  In free space, the B and H fields 

are practically interchangable, with the relation  

    B = µ0H       (4) 

H, like M is measured in A m
-1

. In a material medium, the relation is  

    B = µ0(H + M)      (5) 

The fundamental magnetic field is B. This is because there are no magnetic poles in Nature (or if 

they exist, we never managed to find them. String theorists are convinced they must be 

somewhere). Contrast this with electricity, where we have plenty of electric charges. 

 

 

Fig 1. B, H and M for a uniformly-magnetized ferromagnetic bar. The vectors illustrate Eq.(5) 

 

The absence of magnetic poles is enshrined in one of Maxwell’s equations 

    ∇.B = 0       (6) 
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to be contrasted with the equation for the electric field in a medium ∇.D = ρ, where ρ is the 

electric charge density. B can be derived from a vector potential A, B = ∇ × A. 

So why do we need an H field? The standard answer is that in Ampere’s law, which relates 

B to j in a steady state, 

    ∇ × B = µ0j       (7) 

there are really two kinds of current. One is associated with the magnetization of the medium (jM) 

where the currents are unmeasurable, because they are atomic in origin, while the other kind, the 

free currents (jf) are the usual currents that flow around in conductors and can be measured with an 

ammeter. Hence, ∇ × B = µ0(jf + jM). From (2), (5) and (7), we find  

     ∇ × H = µ0jf       (8) 

This is Ampere’s law for the H-field. The significance of H is that matter responds to the 

H-field acting in the material. Hysteresis loops are plotted as M versus H. In the continuum 

approximation, the internal H field is the sum of an externally-applied field H′ and the H- field 

created by the magnetized material, as shown in Figure 1. The H-field created by magnetized 

material is known as the stray field outside, and the demagnetizing field (Hd) inside. 

Mathematically, we can represent the sources of the H-field as fictitious ‘magnetic charge’. The 

surface charge density is σm = M.en and the volume charge density is  ρm = ∇.M. The field due to a 

fictitious magnetic charge qm is  H = qmer/r
2
. Positive and magnetic charges are the fabled ‘North’ 

and ‘South’ magnetic poles, which can be considered as the sources and sinks of the H-field. The 

main use of magnetic charge is as a computational convenience, to calculate the H-field. It can also 

be deduced from a magnetic scalar potential φm;  H = -∇φm , but only when there is no contribution 

from electric currents. 

 

Response to a field 

For paramagnetic and diamagnetic materials, the linear response of the magnetization to the 

field can be expressed in terms of the susceptibility χ. Defined by the equation 

     M = χH        (9) 

the susceptibility is a dimensionless quantity. There are several other definitions! In (9) the 

susceptibility is usually taken to be a scalar. For a crystal it is a second-rank tensor. 

More generally, the response of a magnetically-ordered material to a magnetic field is 

nonlinear, irreversible and time-dependent. This is the hysteresis loop, which is the true icon of 

magnetism. 

    M  = M(H,t)       (10) 
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The energy of a moment in an external field is –m.B, and the associated torque is m × B. The 

energy density E J m
-3

 of already-magnetized material in an external field H′′′′ is  

 

 

Fig 2. A hysteresis loop. Domain structures for a polycrystalline sample are indicated. 

 

    E = -µ0M.H′′′′       (11) 

Whenever the moment is induced by the field, as it is for a paramagnet, or whenever the 

field is created by the material itself, as it is for the demagnetizing field, a factor ½ must be 

included in the energy expression.  

Energy in magnetic systems is a subtle and sometimes confusing issue. The point is that all 

magnetism basically is due to electric currents, and the magnetic force qv × B on a charge q 

moving with velocity v acts perpendicular to the velocity, and therefore does no work on the 

magnetic system. Overall, energy is conserved, but is may shift from one place to another. The 

energy density associated with a magnetic field is -½µ0H
2
. 

Magnetostatics is the branch of magnetism associated with energy minimization in static 

conditions. The basic equations are (6) and (8), and the total energy to be minimized includes (11) 

and the energy density in the demagnetizing field –½µ0M.Hd, as well as terms representing 

exchange, anisotropy and megnetostriction. 

  

Origin of magnetism 

The origins of magnetism were finally understood in the 1920s.  In quantum mechanics, 

magnetic moments are associated with the angular momentum of charged particles, which is 
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somehow equivalent to an electric current. The reality of the link between magnetization and 

angular momentum was demonstrated by the Einstein-de Haas experiment. The constant of 

proportionality is the gyromagnetic ratio γ. In solids, the charged particles we have to consider are 

the electrons. Their angular momentum has two distinct origins. One is the intrinsic spin angular 

momentm of ½ h, the other is the orbital angular momentum, whose z-component is quantized in 

units of h. The gyromagnetic ratio turns out to be almost exact twice as great in the first case (e/m) 

as in the  second (e/2m). Hence the unit of magnetic moment for the electron is the Bohr magneton, 

µB. 

    µB = eh/2m       (12) 

The value of the Bohr magneton is 9.27 10
-24 

A m
2
. 

The half-integral angular momentum of the electron was shown by Dirac to follow as a 

consequence of relativistic quantum mechanics. Theorists consider the electron as a point particle 

that possesses charge, mass and angular momentum. It helps to imagine a tiny spinning object, but 

it is only a prop for the imagination. Pauli formulated three spin matrices which, when multiplied 

by h/2, represent the three cartesian component of the spin angular momentum. 

 

                 (13) 

 

 

Fig 3. The orbital (left) and spin (right) angular momentum of an electron. 

 

The orbital angular momentum is visualized in terms of the orbital motion in Bohr’s 

planetary model of the atom. Its components are represented by three (2l+1)×(2l+1) matrices. l is 

the orbital quantum number; the spin quantum number s =1/2 
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Magnetism of the hydrogenic atom 

A single electron in the central potential of an atomic nucleus Ze/4πε0r is the starting point 

for understanding chemistry and magnetism. Schrodinger’s equation HψI = εiψI, where H  is the 

Hamiltonian, εi is an eigenvalue and ψI is an eigenfunction known as the electron orbital is 

conveniently written in spherical polar coordinates r, θ, φ : 

  (14) 

Here the angular variation is contained in the orbital angular momentum operator l
2
.  

    (15) 

Solutions of the equation are of the form ψ (r,θ,φ) = R(r)Θ(θ)Φ(φ). The angular part is a 

spherical harmonic Yl
m

, where l and m are the orbital and magnetic quantum numbers. 

  Yl
m

 = cl,mPl
m

(θ)exp(imφ)       (16) 

Here cl,m is a normalization constant, Pl
m

 is the associated Legendre polynomial which 

depends only on θ, and the exponential part depends only on the azimuthal coordinate φ and the 

magnetic quantum number m. The orbitals with l = 0, 1, 2 and 3, which are known as s, p, d, f 

orbitals for historical reasons, are respectively 2, 6, 10 and 14 fold (2l+1 fold) degenerate. The 

orbitals with a given value of n (the principal quantum number, which determines the radial part of 

the wavefunction R(r)) and l form a shell, e.g. 2p, 3d ….. 

The single-electron orbitals can each hold two electrons, one with spin up, ms = -½ (↑), the 

other with spin down (↓), ms = ½.  The sign convention accounts for the fact that magnetic 

moment and angular momentum are oppositely directed because of the negative charge of the 

electron 

 

Fig 4. Single-electron orbitals for the free atom 
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Magnetism of multi-electron atoms 

When there are many electrons on the atom, Coulomb interactions among them complicate 

the solution of the Schrodinger equation. Nevertheless, the one-electron orbitals provide a basis for 

determining the electronic structure of the atom, and hence the periodic table. The blocks of atoms 

there are 2, 6, 10 or 14 atoms wide.   

From a magnetic viewpoint, the key question is how do the spin and orbital moments of the 

electrons add together? Magnetism is associated with partly-filled shells, because when the orbitals 

are all filled with two electrons each with opposite spin there is no spin moment, and when the ± 

ml orbitals are occupied, there is no net orbital moment. The 3d and 4f shells are the ones of most 

interest. Hund developed his empirical rules to decide the orbital occupancy, and hence the 

magnetic moment of the ground state of a free atom with an unfilled shell. 

- First maximise the spin by adding the spin angular momenta of the electrons, consistent 

with Pauli’s principle (the spins of two electrons occupying the same orbital must be 

opposite) to yield the total spin angular momentum S 

- Next, couple orbital angular momenta of the individual electrons to give the maximum 

resultant orbital angular momentum L, consistent with the first rule. 

- Finally couple L and S together to yield the total angular momentum J. J = L+S if the shell 

is more than half-full and J = L-S otherwise. 

There are higher-energy optically-excited states, but for magnetism we need only consider the 

ground state. The last rule is a result of the weak spin-orbit coupling that can be understood by 

considering the nucleus from the electron’s standpoint. The orbiting charged nucleus is like a 

current loop that creates a magnetic field at the electron, coupling its spin moment to its orbital 

moment. Represented by the Hamiltonian Hso=ΛL.S, this interacation is much weaker than the 

Coulomb correlations among the electrons, represented by the Hamiltonian Ho including the 

electrostatic interactions  that give rise to the first two rules.  

There are four orbital  ground states possible for 3d ions, with A, D and F terms, corresponding 

to L = 0 (d
5
), L = 2 (d

1
, d

4
, d

6
, d

9
) and L = 3 (d

2
, d

3
, d

7
, d

8
)
  

 

The crystal field  

Now we take a step closer to reality, by packing the atoms or ions into a solids. Unpaired 

electrons in an outer s shell tend to delocalise and form an unpolarized metallic band with equal ↑ 

and ↓ populations. Unpaired electrons in an outer p shell tend to form covalent bonds, pairing up 

with electrons from neighbouring atoms. The unpaired electrons in outer d and f shells, which have 
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charge density ρ0(r) find themselves subjected to electrostatic interactions with the electrons 

belonging to neighbouring atoms or ions. It is convenient to separate the two sets of charges, and 

consider the potential ϕcf(r) = ∫{ρ(r′)/4πε0|r-r′|}d
3
r′,  created by the neighbouring charges ρ(r′) 

around the central atom, which has the point symmetry of the site. The crystal field interaction is 

represented by the Hamiltonian 

    Hcf =  ∫ρ0(r) ϕcf(r)d
3
r            (17) 

Site symmetry and coordination depends on bond type. The two main classes of magnetic 

crystals are metals and ionic insulators. In the first case, the coordination is usually 8- or 12-fold. 

In the latter, the coordination of cations by anions is often 6-fold (octahedral), and sometimes 4-

fold (tetrahedral) or 8-fold (cubic). Octahedral and tetrahedral sites are typical of oxides and 

fluorides. Both have cubic point symmetry, when undistorted.The crystal -  field interaction is 

much weaker for 4f  than for 3d ions because the 4f shell is screened by the outer 5p electron 

shells. In 3d ions, the 3d shell is the outermost shell. 

 

Fig 5. Tetrahedral and octahedral sites, showing how each has cubic symmetry  

 

Table: Interaction energies for 3d and 4f ions(K) 

 

 

Effects on 3d ions 

Here the crystal field interaction is much stronger than the spin-orbit interaction. The 

one-electron eigenstates of the crystal field  Hamiltonian are combinations of the free ion 

basis states, which reflect the symmetry of the lattice site. For p electrons, these the new 

orbitals are px, py and pz, which remain degenerate in a cubic site.  For d orbitals they are the 

dxy, dyz and dzx group and the dx2-y2 and d3z2-r2 group. The former, known as t2g orbitals are 

lower in energy on an octahedral site, whereas the latter e orbitals are lower in energy on a 
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tetrahedral site. The crystal field splittings ∆cf are indicated in Fig 6. They are of order 1 eV. 

The splittings are partly ionic and partly covalent in nature, because of the different overlaps 

of the two groups with the ligand orbitals. 

The main consequences are: 

— the orbital angular momentum is quenched. The 3d ions behave as if they were spin-

only ions, which greatly simplifies matters  

— Magnetocrystalline anisotropy arises as a consequence of perturbations due to Hso.  

 

Fig 6. One-electron orbitals in the crystal field 

 

 

Fig. 7 Splitting of one-electron energy levels in tetrahedral, octahedral and cubic sites 

∆cf 
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The one-electron picture allows us to deal with D terms, the d
1
 ions, bur also  d

4
 and d

6
 

(hole or electron in a half-filled shell) and d
9
 (hole in a filled shell). For the F terms, the strong 

interelectronic correlations must be considered, and the ground state and excited states are shown 

on the Tanage-Sugano diagrams.  The one-electron picture still has merit if a set of ↑ levels like 

those in Fig 7 is separated from a similar set of ↓ levels by the on-site exchange energy Uex, which 

is the interaction responsible for Hund’s first rule.  The high-spin/low-spin crossover occurs when 

Uex  exceeds ∆cf  

 

Effects on 4f  ions. 

Here J is remains the good quantum number, and the effect of perturbation of the J states by 

the crystal field is introduction of magnetocrystalline anisotropy. For practical calculations, the 

method of operator equivalents On
m

, which are combinations of the angular momentum operators 

is recommended. The crystal field Hamiltonian is then 

     Hcf = Bn
m

 On
m

      (18)  

where the coefficients Bn
m 

depend on the crystal site and the rare earth ion occupying it. 
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A note on units. 

Magnetism is an experimental science, intimately connected with electricity. There are compelling 

reasons to adopt the same unit system, SI, that is used in other branches of science. These include: 

— consistency with education in high school and university 

— relation to quantities measured by laboratory instruments (volts, amps, seconds ..) 

— ability to check the dimensions of any expression by inspection. 

Yet, for historical reasons, much of the research literature is written using the obsolete cgs system, 

or a confusing mixture of SI and cgs units. In order to translate them into SI, a brief guide to the 

main conversions is given below. 

 M M σ B H χ µ qm A φm 

 momentMagnet-

ization 

Specific 

magnetization

B-field H-field Suscept- 

ibility 

Perme- 

ability 

charge vector  

potential 

Scalar 

potential 

SI unit Am
2 

Am
-1 

Am
2
kg

-1 
T Am

-1 
— TmA

-1 
Am Tm A 

cgs unit emu emu/cc emu/g G Oe — G/Oe emu/cm G cm Oe cm
 

conversion* 10
-3 

1000 1 10
-4 

1000/4π 4π 4π 10
-7 0.1 10

-6 
100/4π 

• Multiply the cgs quantity by this factor, to obtain the SI quantity. 

The cgs version of Eq 5 is B = H + 4πM 


