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Anyone who undertakes the organization of an advanced school (often called a summer 

school, irrespective of the season) must be very strongly motivated, or else totally 

inexperienced. We are fortunate to attend a school set up by experienced organizers, who 

knew very well the nature and amount of work involved and yet undertook the task. Good 

memories of schools attended as beginning researchers must be the most common motivation 

to do so, combined with the awareness of the need to bring a particular subject close to the 

new generation. The latter is the root of the first question I have been asked to answer. 

 

Why Magnetism? 

Magnetism is a very wide subject, expanding over physics, chemistry and materials 

science, and intruding into the life sciences. In the past decades it has undergone rapid 

developments, in particular in three areas with actual or potential applications:  

- Permanent magnets (electro motors), 

- Thin films (data storage, writing and reading), 

- Nano particles (ferrofluids, medical applications). 

There is still intensive research and development work in progress on these subjects. Most 

of this work entails the application of phenomenological, often classical description of 

specific processes and constructions. On the other hand challenging problems, both 

conceptual and theoretical, remain open. In fact, these are in the focus of the program of 

ESM2009. This statement seems to contradict the title of the school, “Models in Magnetism”. 

Hence the second question I am supposed to answer. 
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Why Models? 

Magnetism is an immensely complex subject. Sometimes I think I should have run 

away when I heard the absurdity that you cannot cut off the North Pole of a magnet, you will 

walk away with a North and a South poles in your pocket anyway. This was at high school, 

later, having handled some classical models (Langevin); we have also learned that there is no 

magnetism in classical physics. It is not for nothing that Niels Bohr has attacked this problem, 

the result being the Bohr – van Leeuwen theorem that says that a system of charged particles 

obeying classical mechanics has zero magnetic susceptibility. For some reason, in most 

textbooks this is stated in connection with diamagnetism, but there is no such limitation on 

the theorem’s validity. Surely, without the quantisation of angular momentum, a charged 

particle has no stable orbit around a point charge of opposite sign. 

The Bohr atom, with its classical electrons obeying angular-momentum quantization, 

allows for atomic magnetic moments. Quantum mechanics also allows the determination of 

the current density generated by electrons in various orbits, using Schrödinger’s equation. But 

we again bump in a limitation, when we try to convert this into a spatial distribution of the 

magetisation within the atom, which is supposed to be given by the differential equation 

jM =×∇ . Where we have learned that BA =×∇  does not determine the vector potential, 

because of the gauge freedom, the same limitation is seldom pointed out about the analogous 

relation between M and j. Inside an atom, only the magnetisation due to the electron spin can 

be calculated, it is proportional to the spin density. But then, we are stuck with the problem of 

a point-like particle spinning and we have to go further, to the Dirac equation to accept that 

the electron has to have a spin. All this is supposed to illustrate the complexity of magnetism. 

We accept the outcome of relativistic quantum mechanics, which is different to 

understanding with an “Aha!” experience and a feeling of “I see”. We do not see an atom, not 

even a magnetic nanoparticle, not even with a microscope. 

 

The vector model 

This is where the models come in. Already in atomic physics, the consequences of the 

spin-orbit coupling, which is a relativistic effect, are described in terms of the vector model. 

This model is helpful in the description of Hund’s rules, a cornerstone in localized-moment 

magnetism. It is also implicitly used in crystal field theory, which provides a framework for a 

discussion of the coupling of the magnetisation to the crystal lattice. 
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Spin Hamiltonians 

Localized moments serve as the basis for a large number of models of the cooperative 

effects, i.e. magnetic ordering and spin waves. Such models are defined by spin Hamiltonians, 

in which the interaction of localized moments is represented by products of angular-

momentum operators. It is remarkable, how successful these models have been throughout 

half a century while heated discussions were going on about the existence of localized 

moments. Likewise, the itinerant-electron model was developed to a high degree of 

sophistication in the same period. Numerical work, band-structure calculations, entered 

magnetism in this connection. This has limited the possibilities to explain particular 

experimental results. To fit such results, it is often possible to find a density of states function 

that will do the job. Reliable independent density of states curves can make this impossible, 

enabling at the same time the identification of the breakdown of simple itinerant-electron 

behaviour. 

 

Modelling the exchange coupling between localized moments 

In the models mentioned above, the interaction between magnetic moments is 

parameterized in the simplest possible way. About the physics behind the interaction it is 

clear that magneto static interactions are unimportant. Heisenberg showed that the exchange 

interaction can explain ferromagnetic ordering, but the discovery of antiferromagnetic 

ordering called for more sophisticated calculations. Various mechanisms have been identified 

to explain antiferromagnetic exchange and even anisotropic exchange, which involves, apart 

from the angle between the two interacting spins, also the spin orientations with respect to the 

vector connecting the two localized moments. The models used in the calculation and verbal 

description of the exchange interaction are formulated in terms of a limited number of 

localized states on each atom or ion and again a limited number of matrix elements between 

such states. These are of two kinds, matrix elements of single-particle and two-particle 

operators. Of the former, most important is the “hopping term” t, which describes what it 

says: the transition of an electron to a neighbouring localized state. Of the latter, the “Hubbard 

U” is the most important, which stands for the Coulomb repulsion between two electrons 

occupying the same orbital state, with opposite spins. As can be expected in second-order 

perturbation theory, this so-called super-exchange coupling is of the form Ut /
2

. Such a two-

parameter theory is of course too sketchy. Localized magnetic moments involve d or f states, 

for which there are five and seven wave functions, respectively. To explain the observed 
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variation of the exchange coupling in different geometries, the models have to be enriched 

with more localized states and new parameters. Here too, the emergence of numerical work 

has limited the possible combinations of parameter values, eliminating “wishful thinking” in 

the efforts to account for all observations. 

 

The hopping term t is of course the same matrix element that we know from the tight-binding 

approximation of Bloch wave functions. Naturally, if hopping is possible from an atom to its 

first neighbour, it will be also possible from the first to the second neighbour and so on. This 

identification leads us to the limit of the validity of the model underlying super-exchange. The 

formula found in second order in the hopping term suggests that to get a strong exchange 

coupling, we should look for materials with large values of t. But surely, that will give a 

mobility to the electrons that disqualifies the localized-electron model and leads us back into 

the world where the itinerant-electron model is appropriate. This is not a sharp distinction. 

Between the two models is the most challenging area of magnetism. 

 

Deceptively simple-looking models 

The term “strongly correlated electron systems”, which describes this area can be 

taken for a warning: forget about mean-field theories. The models used to describe these 

systems look simple, but hide a gold mine of possible phenomena. How well the gold is 

hidden can be illustrated with the Kondo Hamiltonian. It is the simplest Hamiltonian one can 

think of for the description of a localized electron in the sea of free, non-interacting electrons. 

Yet it took sixteen years to solve the Kondo problem. Likewise, the Hubbard model, which 

was designed to elucidate the itinerant vs. localized duality in 3d transition metals, but 

actually is more relevant to oxides, where there is no conduction band in the energy range of 

interest, is stripped from all parameters except t and U and the particle density, nevertheless 

exact results are only available for specific values of the parameters. Yet, there is progress in 

the understanding of strongly correlated electron systems and of the phenomena observed in 

these systems, such as non Fermi liquid behaviour, quantum criticality and coexistence of 

ferromagnetism and superconductivity. 

 

Phenomenological models 

Processes involving domains and domain walls are commonly described in 

phenomenological models. Unlike the models dealing with exchange interactions, in which 

the state of the electrons are treated quantum mechanically and spin Hamiltonians, where 
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atomic moments are treated classically or quantum mechanically, the models used to study 

magnetisation processes, hysteresis loops and switching ignore the atomic structure and treats 

magnetisation as a continuum. Only the symmetry properties of the crystal lattice are used to 

determine the nonvanishing terms in the anistropy energy. Although reliable ab initio 

calculations of the anisotropy constants are beginning to appear, it is more common to 

determine these parameters experimentally. The thickness of  multilayers is diminishing every 

year, but continuum models are still popular, where for the propeties of layers (magnetisation, 

anisotropy, electrical conductivity) the bulk values are used. 

 


