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Abstract. Measurement of the field and frequency dependent magnetic complex susceptibility, χ 

(ω, Η) = χ' (ω, Η) −i χ"(ω, Η), of magnetic fluids, has proven to be a reliable method for investigating a 

number of important properties of such fluids including ferromagnetic resonance and relaxation times. 

Also, because of the inverse Fourier transform relationship which exists between the after-effect function, 

b(t), and  χ"(ω), b(t) may be obtained and used in determining a value of the precessional decay time, τ0. 

Here, results obtained from measurements on a sample of Mn
0.1

Fe
0.9

Fe
2
O

4
 particles suspended in Isopar 

M, by means of the transmission line technique in the MHz - GHz range, are presented. 
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1. Introduction 

Magnetic fluids are stable colloidal systems consisting of single-domain magnetic 

particles covered by a surfactant in order to prevent particle agglomeration and dispersed in a 

carrier liquid. The particles have radii ranging from approximately 2-10 nm and when in 

suspension their magnetic properties can be described by the paramagnetic theory of 

Langevin. The particles are considered to be in a state of uniform magnetization with a 

magnetic moment m= Msv, where Ms denotes the saturation magnetization and v is the 

magnetic volume of the particle.  

 There are three characteristic times which govern the behaviour of a particle and two of 

these are associated with the relaxation of the particles magnetic moment, namely the 

Brownian relaxation time (τΒ) and the Néel relaxation time (τΝ). The third is the decay time 

associated with precession (τ00) of the magnetic moment.   

It is this latter component which is of particular interest in this work and it is shown how 

it may be determined  by means of the unique relationship which exists between the after-

effect function, b(t), and the imaginary susceptibility component χ’’(ω).  
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2. Theory  

χ(ω), of an assembly of single domain particles can also be described in terms of its 

parallel, χ||(ω) , and perpendicular, χ⊥ (ω) , components, with [1] 

( ))(2)(
3

1
)( || ωχ+ωχ=ωχ ⊥  .                                                     (1) 

Over the frequency range considered here relaxation due to Brownian rotational 

diffusion of the particles will, in general, be ignored and thus the τ|| component, will be 

considered to be dominated by the Néel relaxation mechanism with relaxation time τΝ
.  

The perpendicular or transverse susceptibility, )(ω⊥χ , can have a resonant character, 

this effect being indicated by a transition in the value of   χ' (ω��from a + ve to a -ve  

quantity at an angular frequency , ωres = 2π fres.  

If the polar angle θ is small, ωres, is given by [1], 

ωres   = 2πfres =�γ�HA                                               (2)   

ΗΑ= 2K/ Ms, where K is the anisotropy constant in J/m
3
and γ is the gyromagnetic ratio. 

  If a radio frequency field is applied perpendicular to H
A
, the motion of the magnetic 

moment has a typical resonant character which is commonly described by means of the 

Landau and Lifshitz equations, namely, 
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where α is a damping parameter γ� and the precessional decay time, τ0 =(αω0)
-1

.  

The after-effect function, b(t), represents the decay of magnetization after the sudden 

removal of an external polarizing magnetic field, and χ(ω) and b(t) are related by the 

expression [2],  
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ω

ωχ ′′
= −1Re2 Ftb

                                       (4)  

where F
-1

 denotes the inverse Fourier transform. 

Scaife [3] has shown that b(t) for the Landau and Lifshitz equations, has the form, 
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 If the area under b(t), 
∫

∞

0

dt)t(b  = B say, then it follows that, )texp(tcosdt)0(bB
0

0
0

τ
−ω= ∫

∞
, 

resulting in  a normalised value of [4],                                                                      
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from whence, by knowing B/b(0) and ω0, τ
�

  can be determined. 

 

3. Measurements 

Measurements reported here were made by means of the short-circuited, coaxial 

transmission line technique [5], [6] using  a Hewlett Packard (HP) 50� coaxial line 

incorporating a co-axial cell, in conjunction with an HP 8753C  network analyser. To obtain 

polarised measurements the coaxial cell containing the ferrofluid sample, terminated in a 

standard HP short circuit load, was placed between the pole faces of an electromagnet, the 

axis of the cell being perpendicular to the biasing field. The biasing field, H, was altered 

between 0 and 104 kAm
-1

. Automatic swept measurements of the input impedance of the line 

containing the sample were measured and from these measurements the complex components, 

χ' (ω��) ��and� χ"(ω��� ) were determined. 

 

4. Results 

Measurements are presented for a 104 Gauss fluid consisting of Mn
0.1

Fe
0.9

Fe
2
O

4
 

particles suspended in Isopar M. Measurements were performed over the range 100 MHz to 6 

GHz and for 10 values of H. This curves where then fitted [7] up to 10 GHz in order to 

facilitate a more accurate determination of the inverse Fourier transform of  χ"(ω)),. 
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Fig 1.Plot of χ'and χ''  against f(Hz).                  Fig2. Plot of fit to χ'' against f(Hz). 

 

  Fig  1. shows a plot of the χ’(ω) and χ’’(ω) components of the sample and from these 

plots it can be seen that when H=0, fres = 1.8 GHz, and when H= 104 kAm
-1

, fres rises to 6 

GHz. The χ’’(ω) component has a high frequency loss peak that occurs at a frequency of fmax 

= 1.1 GHz at H=0. This shifts to 5.9 GHz at H= 104 kAm
-1

. Thus the value of fmax approaches 

the value of fres as resonance becomes the dominant process. 

Fig. 2 shows the χ"(ω�� data which was transformed to obtain the b(t) profiles shown 

in Fig. 3 and one can observe how, over the polarizing field range, b(t) changes from an 

exponential type decay to an oscillatory one. This transition arises because with increasing H, 

the parallel relaxation component diminishes its contribution to the overall susceptibility and 

b(t) becomes similar to that of the Landau Lifshitz form. 
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Fig 3.Plot of b(t) against t sec.                         Fig 4.Plot of area under b(t) against H. 
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Fig 5. Plot of τ1 and τ2 against H. 

 

Computing the area, B, under the b(t) curves , as shown in Fig. 4, and using the fres  

values, τ0 as a function of H, was determined by use of  Eq.(6). The results are shown plotted 

in Fig.5. As can be observed from Fig.5, for the analyzed sample, Eq. (6) has real solutions 

only for polarizing fields larger than 50 kA/m. This is due to the fact that the approximation 

used in computing the solutions of Eq.(6) (i.e. ω0=2πfres) is valid only for strong polarizing 

fields. One also notes that, Eq.(6) is a quadratic equation and has two solutions, τ1 and τ2 . The 

correct values τ0 can be chosen by simply testing the values of τ1 and τ2 with the relation α = 

(τ0ω0)
-1

, where α cannot be larger that one. Performing this test for all solutions of τ1 and τ2, 

we determine that the correct solutions of Eq.(6) are those of τ1 (see Fig.5) and at large values 

of H a mean value of τ0=1.5 10
-10

 s  is obtained. 

 

5. Conclusions 

Using the frequency and polarizing field dependence of the complex magnetic 

susceptibility, χ(ω,Η)=χ' (ω,Η)−i�χ"��ω,Η), and the corresponding after-effect functions, 

the determination of the precessional decay time, τ0, under the strong polarizing fields has 

been presented. The significance of the area, B, under the after-effect functions has been 

highlighted and it has been shown that τ0 can be determined from the expression 

2
0

2
res

0

1)0(b

B

τω+

τ
= ; this method being based on the analysis of the after effect function of a 

magnetic fluid at resonance.  

The determined value of τ0 = 1.5·10
-10

s lies within the generally accepted range for τ0.  
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