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Abstract. The paper presents a special methodology for obtaining non-local generalized symmetries 

for nonlinear evolutionary equations. The method put the equation in a new form, as compatibility 

condition between two equations, and studies the generalized symmetries of the obtained system. This 

method can allows to discover new non-local symmetries, non-listed when the same equation where 

studied in a classical way.  
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1. Introduction 

 In recent years considerable attention has been devoted to applications of symmetry 

group methods to a large variety of two or three order non-linear partial differential equations 

([4],[6],[9]), but relatively few complete results have been obtained for the highest order 

evolution equations. 

The purposes of this paper are: 

• to generalize the method of Blumann to find non-classical symmetries of a fourth order 

equation at the evolution equations represented as compatibility condition between two other 

equations.  

• to obtain non-local symmetries of the Calabi flow equation.  

 

2. Classical and non-classical symmetries. Methodological approach 

 The symmetries encountered in physics are usually of the type commonly referred to as 

point or Lie-Bäcklund symmetries. For differential equations derived from a variational 

principle, the Lie-Bäcklund symmetries which preserve the action lead to conservation laws. 

However, not all conservation laws stem from Lie-Bäcklund symmetries. To account for all 

conservation laws in Lagrangian field theory one must enlarge the notion of symmetry to 

include classical and non-classical generalized symmetries. 
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2.1 Generalized Symmetries for Evolution Equations 

Let us consider a n -th order PDE system: 

 0=])[,,( )(
xuxt

n

ν∆  (1) 

where ),( xt  represent the independent variables, while qRquu ⊂≡ }1,=,{ αα  the dependent 

ones. The notation )(n
u designates the set of variables which includes u  and the partial 

derivatives of u  up to n -th order. 

Let us consider the set ∆S  of all the analytic solutions of the system (1). A symmetry 

group associated to the PDE system ((1)) consists in one-parameter group of transformations 

acting on an open subset UM ×⊂ χ  which leave the set ∆S  invariant:  
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 where ε  is the group parameter, and ξ , τ , αφ  are the infinitesimal generators of the 

symmetry group. 

The associated infinitesimal symmetry operator is a vector field of the form:  
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A Lie-Bäcklund symmetry for a PDE system which describes a dynamical system is a 

vector field V  verifying the Lie invariance condition is (Olver [9]): 

  0=|])[( 0=

)(

∆∆Upr
n  (3) 

(the symmetries determining equation), where pr
(n)

(U) is the n order prolongation of U on the 

Grasmanian. This condition is equivalent to the fact that the coefficients ),,( uxtξ , ),,( uxtτ , 

),,( uxtαφ  are infinitesimal generators of a Lie symmetry group. 

A solution ],,[ uxtξ , ],,[ uxtτ , ],,[ uxtαφ  of the equation (3) , where the notation 

],,[ uxtf  means a dependence of the function f  on the independent variables t  and x  and 

the dependent variables qu 1,=,αα  with all their partial derivatives, is called a  generalized 

symmetry. The importance of generalized symmetries is underlined by their role in 

completely integrable systems of non-linear differential equations.  
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2.2 The Non-local Potential Symmetries 

In [4], Bluman introduced a method to find a new class of symmetries for a PDE. By 

writing a given PDE, denoted by  

  0=],,[ utx∆  

in a conserved form  

  ( ) 0,=,...),,,(0 xxt uuxtKu −  (4) 

 a related system denoted by 0=],,,[ vutxS  with potentials as additional dependent variables 

is obtained:  

  




,...),,(=

=

0 uxtKv

uv

t

x
 (5) 

If ),( txu , ),( txv  satisfies 0=],,,[ vutxS , then ),( txu  solves 0=],,[ wtx∆  and ),( txv  solves 

an integrated related equation 0=],,[ vtxT , obtained by replacing u  in the second equation 

of (5) with xv . Any Lie group of point transformations admitted by 0=],,[ vtxT  induces a 

symmetry for 0=],,[ utx∆ ; when at least one of the generators of a group depends explicitly 

of on potential variable v , then the corresponding symmetry is neither a point nor a Lie-

B¨acklund symmetry. These symmetries of 0=],,[ utx∆  are called potential symmetries. 

 

 2.3 Generalized potential symmetries 

The method of Blumann presented below can be generalized, with possible usefully 

applications in the case of evolution equation of order greater that three. By writing the PDE 

0=],,[ utx∆  in a special form:  

  ( ) 0,=,...),,,()( 0 xxt uuxtKDPu −  (6) 

 where )( xDP  is a derivation operator witch do not depend explicitly on the independent 

variables x  and t , one can rewrite the initial equation as a compatibility condition 

txtx vDPvDP ])([=))((  for the related system 0=],,,[ vutxPS :  
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1 vuxtKv
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t

x
 (7) 

 where 1K  is obtained from 0K  under condition that the system (7) will be equivalent with the 

initial equation 0=],,[ utx∆ . 

Any Lie group of point transformations admitted by the associated system 

0=],,,[ vutxPS  induces a symmetry for the initial equation 0=],,[ utx∆ , by definition of the 
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invariance of solutions; when at least one of the generators of a group depends explicitly of v , 

then the corresponding symmetry is a generalized potential symmetry for the initial equation, 

witch have a non-local form if expressed only in u . The generalized symmetries of the 

associated system 0=PS  will determine also non-local generalized potential symmetries for 

the initial equation. 

Note that if [ ]IdLvDP x ⋅− λ)(1/=)(  for an differential operator L , and the expression 

of ],,,,[1 vuxtK λ  is linear in v , then the system (7) is a Lax representation of the initial 

equation 0=],,[ utx∆ :  

  .
],,,,[=

=

1

 −

vuxtKv

vuvLv

t λ

λ
 (8) 

 The Lax representation method is one of the classical way to prove the integrability of 

an evolution equation. 

 

3.  The non-local symmetries of Calabi flow 

In this section, I consider a version of the Calabi flow in 1+1 dimensions, obtained in 

Error! Reference source not found. from the local expression of Calabi flow in 2+1 

dimensions (see Error! Reference source not found.)by uni-directionaliation procedure:  
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 as a model equation to exemplify the procedure to obtain non-local potential and 

pseudo-potential symmetries. 

The equation (9) write explicitly:  
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The original Calabi flow equation is supposed to be integrable ([2]) because it possess a 

zero curvature representation and an infinite (non-standard) algebraic hierarchy of high order 

integrable equations. So, the integrability of the equation (10) can be strongly supposed too. 

In a recent paper (A. Boldea, C. Boldea Error! Reference source not found.) we 

investigated the existence of generalized symmetries for this equation, obtaining that that the 

group of all arbitrary-order (local) generalized symmetries for the equation (10) is generated 

by three independent symmetry operators. They represent the space and time translation, 

respectively a scaling transformation ( ),(),( 4txtx αα→ ). The finite number of symmetries 
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would suggest a limited integrability of the equation. These apparently contradictory results 

could be due to the limitation to local symmetries in the later case. This is why, the study of 

the existence of some non-local hidden symmetries is clearly necessary. 

 

 3.1 The potential symmetries of Calabi flow 

In order to find the potential symmetries of (10), we write the Calabi flow equation in a 

conserved form:  
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 The associated auxiliary system 0=],,,[ vwtxS  will by:  
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 The integrated related equation is obtained by eliminating the u  variable from (12):  
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The generalized symmetries of the integrated related equation (13) are obtained from the 

symmetry generating equation (3), explicitely (Olver [9]):  
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 for the m  order evolutionary generalized symmetry vxQ uuxtQv ∂),,,,(= L . 

The evolutionary generalized symmetry is  

  ,])[(= vx cbvvbaxX ∂+++  (15) 

then the integrated equation (13) admits an infinite-parameter Lie group of point symmetries 

spanned by the infinitesimal generators:  
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 Note that this symmetry generators do not have a local form expressed only in term of 

u . 

 

3.2 The generalized potential symmetries of Calabi flow 

Consider next the case of generalized potential symmetries of Calabi flow (9). In order 

to apply the method exposed in the Section 2.3, the Calabi flow equation will be considered in 

the special form:  
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The form of a symmetry operator for the system (20) is  
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and the symmetries determining equation will be  
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The solutions of the system (22), obtained using a Maple package, are:  
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where τ is an arbitrary C
1
 function. The generalized potential symmetry operator is  
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 then the system (20) admits an infinite-parameter Lie group of point symmetries spanned by 

X . Note that this class of symmetry generators depends on an arbitrary continuous function 

)(= tττ  and their are obviously non-local. 

 

4. Conclusions 

 We investigated the problem of the existence of generalized symmetries of the Calabi 

flow equation, using the classical Lie approach and a new complementary method, based on 

the Blumann approach. The Calabi Flow represents in the same time an interesting models 

arising from physics and a good toy models of fourth order differential equation which can be 

investigated by that technique. The main results we obtained could be synthesized as follows: 

(i) The group of classical Lie symmetries for the equation Calabi flow is generated by three 

geometrical symmetries; the group of non-local potential symmetries is spanned by 

another three generators 1X , 2X , 3X  from (18). 



 14 

(ii) If we investigate the symmetries obtained by the generalization of the Blumann 

method, one obtain a group of non-local symmetries spanned by a class of infinite 

number of generators. 

The methodological approach exposed here can be easy adapted and applied in the case 

of mechanical models of a field theory containing highest order derivative terms (proposed by 

P. D. Mannheim and A. Davidson [7]), or in the case of the Pais-Uhlenbeck fourth order 

oscillator (see [8]):  

  .)( 212

2
2

2
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4

q
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where )(= qii ωω . This subject will be tackled into a forthcoming paper. 
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