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Abstract 

A key concession in nanoscale device modeling is the derivation of transport models able to depict the 
quantum effects and, at the same time, to be straightforward in computer codes. In this paper, we propose a 
model for ballistic transport in heterostructure devices within Quantum Hydrodynamic (QHD).  The model 
is numerical implemented using a finite-difference discretization and tested in the case of resonant tunneling 
diode due to availability of experimental data. Genuine QHD model is a frame in development of a quantum 
photovoltaic device simulator. 
Keywords: ballistic transport, Quantum Hydrodynamic, finite-difference. 

 
 

1. Introduction  

The viscous quantum hydrodynamic equations for semiconductors with constant 

temperature are numerically studied. The model consists of the one-dimensional Euler 

equations for the electron density and current density, including a quantum correction and 

viscous terms, coupled to the Poisson equation for the electrostatic potential. The numerical 

technique used is a central finite difference method.  

Quantum semiconductor devices, like superlatices or resonant tunneling diodes [1], 

are becoming of increasing importance in state-of-the-art semiconductor modeling. These 

devices rely on quantum tunneling of charge carriers through potential barriers. The objective 

of this paper is to discretize the viscous quantum hydrodynamic equations in one space 

dimension in order to emphasize the behavior of the solutions.  

 
2. Mathematical model 

The equations for electron density ( ),n x t  and current density ( ),J x t  are [2]: 
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and Poisson equation for the electrostatic potential ( ),V x t  
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                                                ( )2
V n C xλ ∆ = −                                                   (3) 

The term 
ext

n V∇  models heterogeneous semiconductor materials [3]. 

These equations are scaled by introducing characteristic length L and the 

characteristic time 0τ  and define the characteristic density , voltage and current density, 

respectively, by 
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where i is the mean free path defined by 2 2
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and  0/ 2b BL h mk T=  is the de Broglie length.  

The values of the parameters which we employ for the numerical simulations are: 

elementary charge Cq 19106.1 −⋅= , effective electron mass kgm 31101.9063.0 −⋅⋅= , 

Boltzmann constant KJkB /1038.1 23−⋅= , Planck constant Jsh
341062.6 −⋅= , semiconductor 

permittivity VmAss /1085.89.12 12−⋅⋅=ε , lattice temperature KT 770 =  and momentum 

relaxation time s
12

0 109.0 −⋅=τ . The characteristic length and density are 

                                             125L nm= ,    24 310C m
∗ −=                                       (6) 

The viscous quantum hydrodynamic equations (1)-(3) in the one dimensional interval 

( )0,1Ω = , are discretized using central finite differences.  

The boundary conditions are like in [4], which express that the total charge nC −  

vanishes at the interval boundary. For current density we take Neumann boundary condition 

0/ =∂∂ xJ . The boundary conditions for the electric potential are 0 and U, where U is the 

applied potential.  

At each time step, after solving (1)-(2), the Poisson equation (3) is solved using the 

new value for nj. The stationary solution is computed as the long time limit of the transient 

solution. The time step control is done heuristically, and the transient computations are 

stopped when the changes of the current density at selected points are smaller than a certain 

tolerance. At applied voltage 0=U , the initial conditions for (1)-(3) may be chosen as 

( ) ( )xCxn =0,  and ( ) 00, =xJ . The obtained solution at the applied voltage U  is used as 

initial data for (1)-(2) with an applied voltage UU ∆+ . 
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3. Numerical simulations 

3.1Simulation of a ballistic diode 

The scaled parameters are 

                                   00289.0=ε        1.0=λ         125.0=τ                                  (7) 

And the doping profile 

                   ( ) ( ) ( )( )4001000tanh6001000tanh45.01 −−−+= xxxC ,     ( )1,0∈x      (8) 

In Figure 1a we present the electron density for an applied voltage VU 06.0= . The particle 

density oscillates as already point out in [5]. The current density is not constant in the viscous 

model like in Figure 1b.  

 

 

a.                                                                              b.  

Figure 1: a. Electron density versus position of the viscous quantum hydrodynamic model; b. 

Current density versus position for applied voltage U=0.06V 

 
3.2 Simulation of a resonant tunneling diode 

The tunneling diode consists of highly doped GaGe regions near the contacts and a lightly 

doped middle region of nm50  length. The middle region contains a quantum well of nm5  

length sandwiched between two nm5  AlGaAs barriers. This resonant barrier structure is itself 

sandwiched between two nm5  GaAs spacer layers. The physical effect of the barriers can be 

modeled by an additional step function Vext added to the electrostatic potential. The device 

length is nmL 125=  and the doping profile is 
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The potential Vext is taken as in [3]: 
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We take in the simulations 4000 grid points and a time step ps510− . Typically the 

equilibrium is reached in 10-20ps.  

 

a.                                                                              b.  

Figure 2: a. Electron density versus position; b. Electrostatic potential versus position for  

VU 02.0=  
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