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Abstract 

The potential in a pseudo-Gaussian quantum well behaves asymptotically as Gaussian, but approaches 
harmonic oscillator (HO) potential near to the origin. A whole family of such potentials can be defined. The 
quantum problem of finding discrete levels into the pseudo-Gaussian well cannot be solved analytically. 
First, the generating functional is constructed using symbolic computations. Then, numerical values for the 
model parameters are allocated and numerical procedures follow to calculate matrix elements of the 
Hamiltonian operator in the energy basis of HO. Solving these models can be useful for designing new 
quantum electronic devices. 
Keywords: Pseudo-Gaussian well; Generating functional method; Discrete levels in quantum 
heterostructures 

 

1. Introduction 

Advances in technology allowing for deposing ultra thin layers have opened a domain 

for semiconductor devices where charge carriers exhibit quantum behavior and discrete 

energy levels. We use a new class of potentials with a Gaussian asymptotic behavior [1] but 

approaching to the potential of the harmonic oscillator when 0x → . It is shown [2] that, in 

the energy basis of the harmonic oscillator, the matrix elements of the Hamiltonian operators 

of these new models can be derived from generating functionals.  

The progress in algebraic and numerical computation offers new possibilities of 

analyzing new classical or quantum systems that cannot be analytically solved. We aim to 

define a large family of models whose potentials have a Gaussian asymptotic behavior but 

behave like the HO potential near 0x � .  

 

2. Method and Calculations 

The one-dimensional HO of mass m  and frequency ω  has the well-known 

Hamiltonian  
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where 0V  is an arbitrary ground energy. The energy is measured in units of ε ω= h  so that we 

can write  
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= , = − + + ,  (2) 

using the dimensionless coordinate x aξ = /  measured in units of a mε= /h , and denoting 

02Vλ ε= / . The number operator 0N  has the eigenvalues 2 1n λ+ +  where 0 1 2n = , , ...  is the 

quantum number of the discrete energy levels 1
2[ ( 1)]

n
E nε λ= + + .  

We propose a Gaussian generalization of HO, defining pseudo-Gaussian models 

(PGM) with new number operators  
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in which we use dimensionless potentials  
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In this way we constructed a family of models, denoted from now by ( )rλ µ, , 

depending on dimensionless parameters, Rλ ∈  and 0µ > , and the integer number 1 2r = , ,...  

which is called the order of PGM. The genuine Gaussian potential is of the order 0r = . For 

0λ ≥  the potentials (4) are positively defined representing pseudo-Gaussian barriers but 

when 0λ <  we have pseudo-Gaussian wells of different profiles (Fig. 1).  

 

        

Figure 1. Pseudo-Gaussian barriers ( 0λ = , 0 2µ = . ) and wells ( 8λ = − , 0 2µ = . )                          
for r = 1,2,3,4,5,6 7. 
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The matrix elements of an operator X  can be derived from the corresponding 

generating functional,  

 [ ] ( )[ ]( )Z X d F XFσ τ σ τξ ξ ξ, = ,∫  (5) 

according to the rule  

 
0

1
[ ]

2

m n

m n
Z Xm X n

m n
σ τ σ τ

σ τ

,+

| = =

∂ ∂| | = .
! !

 (6) 

In the simplest case of HO we obtain the functional  

 0[ ] (1 4 )exp(2 )Z Nσ τ λ στ στ, = + +  (7) 

giving rise to the diagonal matrix elements 0 (2 1) nmm N n n λ δ| | = + + .  

The generating functional of an arbitrary model ( )rλ µ, ,  
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 (8) 

can be also calculated in terms of Gaussian integrals. We obtain the final result (for more 

details see [2]):  

 [ ] [ ]exp(2 )Z N NZσ τσ τ στ,, = .%  (9) 

where  
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3. Results 

 The Mathematica code written for calculating energy levels has two distinct parts. 

First, the potential (Eq. 4) and the generating functional (Eq. 9) is analytically calculated, then 

it follows a numeric evaluation in which matrix element computation (Eq. 6) and 

diagonalization for obtaining energy eigenvalues (levels) is numerically performed.  

In Figure 2 we depict our results in form of energy levels: bound states for negative 

energies, resonances for positive, for 8λ = , 0 2µ = . , r = 4. We used a matrix [m,n] up to 

30x30, for larger ones the computations are becoming prohibitive (because of the higher order 

derivatives). 
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For positive energy levels, a subsequent computation (to be published) using the 

transfer matrix method applied to the barriers [3] using the potential as in Figure 2b, proved 

that the resonances are genuine and they are not an artifact of the method.  

 

        

Figure 2. Calculated energy levels in Pseudo-Gaussian barriers ( 0λ = , 0 2µ = . ) and wells 
( 8λ = − , 0 2µ = . ) for r = 4. 

 
4. Conclusions 

We calculated energy levels and resonances for PGO potential and obtained the same 

results using two very different methods. Energy level computations for a given potential may 

prove to be an essential new method for designing nanometer electronic devices with new 

properties. 
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