SPIN-HAMILTONIAN PARAMETERS OF Cr ${ }^{3+}$ IONS IN CdIn $\mathbf{2 S}_{4}$ CRYSTAL

M. Ciresan, M. Stanciu, N. M. Avram
Dept. of Physics, West University of Timisoara, Bd. V. Parvan No. 4, 300233 Timisoara, Romania

Abstract

The spin-hamiltonian parameters (zero - field splitting D , $\mathrm{g}-$ factors $\mathrm{g}_{\|}, \mathrm{g} \perp$) for trigonal Cr^{3+} doped in $\mathrm{CdIn}_{2} \mathrm{~S}_{4}$ crystal are calculated from the higher - order perturbation formulas , based on the cluster approach. The method is based on the single spin-orbit coupling parameter model. The comparision with experimental data gives a satisfactory agreement.

Key words: EPR, spin Hamiltonian parameters, crystal field.

1. Introduction

$\mathrm{CdIn}_{2} \mathrm{~S}_{4}$ is a ternary compound of the $\mathrm{A}^{\mathrm{II}} \mathrm{B}^{\mathrm{II}} \mathrm{C}^{\mathrm{VI}}$ family to which great attention has been devoted in the last few years [1]. Chromium - doped $\mathrm{CdIn}_{2} \mathrm{~S}_{4}$ have been studied by many investigators to provide some insights on the electronic structure of the ferromagnetic spinels. $\mathrm{CdIn}_{2} \mathrm{~S}_{4}$ crystallizes in the cubic spinel structure [2] (space group $\mathrm{O}_{\mathrm{h}}{ }^{7}-\mathrm{Fd} 3 \mathrm{~m}$) and its cubic unit cell has lattice constants $\mathrm{a}=\mathrm{b}=\mathrm{c}=10.845 \AA$ [3].

In the spinel structure one third of the cations are on tetrahedrally coordinated A- sites with local symmetry Td. Two thirds of the cations are on octahedrally coordinated B- site with local symmetry $\mathrm{D}_{3 \mathrm{~d}}$. The chromium ions in the trivalent state Cr^{3+} replace indium and form an octahedral cluster $\left[\mathrm{C}_{\mathrm{r}} \mathrm{S}_{4}\right]^{-5}$. The aim of the present study is to calculate the spin hamiltonian parameters (zero - field splitting D, g factors g_{II} and $\mathrm{g} \perp$) for trigonal Cr^{3+} doped in $\mathrm{CdIn}_{2} \mathrm{~S}_{4}$ crystal, from the perturbation formulas based on the single spin-orbit coupling parameter model. The spectroscopic parameters for $\mathrm{CdIn}_{2} \mathrm{~S}_{4}: \mathrm{Cr}^{3+}$ are $\mathrm{B}=310 \mathrm{~cm}^{-1}, \mathrm{C}=3500$ cm^{-1} and $\mathrm{Dq}=1490 \mathrm{~cm}^{-1}[4]$.

2. Calculations

Effective spin-Hamiltonian (SH) for 3d ions in a trigonal crystal field is express by the following relation [5]:

$$
\begin{equation*}
H=g_{\|} \beta H_{z} S_{z}+g_{\perp} \beta\left(H_{x} S_{x}+H_{y} S_{y}\right)+D\left[S_{z}^{2}-\frac{1}{3} S(S+1)\right] \tag{1}
\end{equation*}
$$

where: β is the Bohr magneton, the first two terms are referred to Zeeman interaction, whereas the last term is known as the zero-field splitting (ZFS) term. D is the zero-field splitting parameter and $g_{\|,} g_{\perp}$ stand for the electronic paramagnetic resonance (EPR) g-factors.

Using Macfarlane's equations [6, 7], which has considered a d^{3}-ion in a trigonal octahedral center based on the high-order perturbation approach, we calculate the EPR parameters D, $g_{\|,} \Delta g=g_{\|}-g_{\perp}$:

$$
\begin{gather*}
D=\frac{2}{9} \xi^{2} v\left(\frac{1}{D_{1}^{2}}-\frac{1}{D_{3}^{2}}\right)-\sqrt{2} \xi^{2} v^{\prime}\left(\frac{2}{3 D_{1} D_{4}}+\frac{1}{D_{2} D_{3}}+\frac{1}{3 D_{3} D_{4}}+\frac{1}{D_{2} D_{4}}+\frac{4 \sqrt{2} B}{D_{1} D_{4} D_{5}}+\frac{4 B}{D_{3} D_{4} D_{5}}+\frac{9 B}{2 D_{2}^{2} D_{3}}\right) \tag{2}\\
g_{\|}=g_{s}-\frac{8 \xi k}{3 D_{1}}-\frac{2 \xi^{2}}{3 D_{2}^{2}}\left(k+g_{s}\right)+\frac{4 \xi^{2}}{9 D_{3}^{2}}\left(k-2 g_{s}\right)+\frac{8 \xi^{2}}{9 D_{1}^{2}}\left(k-2 g_{s}\right)-\frac{4 \xi^{2} k}{3 D_{1} D_{2}}+ \\
 \tag{3}\\
+\frac{4 \xi^{2} k}{9 D_{1} D_{3}}+\frac{4 \xi^{2} k}{3 D_{2} D_{3}}+\frac{8 \xi k}{9 D_{1}^{2}} v-\frac{8 \sqrt{2} \xi k}{3 D_{1} D_{4}} v^{\prime} \tag{4}\\
\Delta g=g_{\|}-g_{\perp}=\frac{4 \xi k}{3 D_{1}^{2}} v-\frac{4 \sqrt{2} \xi k}{D_{1} D_{4}} v^{\prime}
\end{gather*}
$$

in which: $\mathrm{g}_{\mathrm{s}}=2.003, \xi=k \xi_{0}$ is the spin-orbit constant in a crystal, $k \approx\left(\sqrt{B / B_{0}}+\sqrt{C / C_{0}}\right) / 2$ [8] is the orbital reduction factor with B_{0} and C_{0} being the Racah parameters for a free ion and B and C the Racah parameters in a crystal [9]. For Cr^{3+} free ion we take [8] $\mathrm{B}_{0}=1030 \mathrm{~cm}^{-1}$, $\mathrm{C}_{0}=3850 \mathrm{~cm}^{-1}$ and $\xi_{0}=273 \mathrm{~cm}^{-1}$.

The zeroth-order energy denominations D_{i} are defined in tems of Racah parameters and crystal field strength Dq as follows:

$$
\begin{array}{lll}
D_{1}=\Delta=10 D q, & & D_{2}=15 B+4 C, \\
D_{3}=\Delta+9 B+3 C, & & D_{4}=\Delta+12 B, \\
D_{5}=2 \Delta+3 B, & D_{7}=\Delta+6 B, & D_{8}=\Delta+6 B, \\
D_{10}=\Delta, & D_{12}=\Delta+14 B+3 C, D_{13}=\Delta+5 B .
\end{array}
$$

The trigonal field parameters v and v^{\prime} can be expressed using the superposition model of crystal field [10] as:

$$
\begin{aligned}
& v=\frac{18}{7} \bar{A}_{2}(R)\left(3 \cos ^{2} \theta-1\right)+\frac{40}{21} \bar{A}_{4}(R)\left(35 \cos ^{4} \theta-30 \cos ^{2} \theta+3\right)+\frac{40 \sqrt{2}}{3} \bar{A}_{4} \sin ^{3} \theta \cos \theta(5) \\
& v^{\prime}=-\frac{6 \sqrt{2}}{7} \bar{A}_{2}(R)\left(3 \cos ^{2} \theta-1\right)+\frac{10 \sqrt{2}}{21} \bar{A}_{4}(R)\left(35 \cos ^{4} \theta-30 \cos ^{2} \theta+3\right)+\frac{20}{3} \bar{A}_{4} \sin ^{3} \theta \cos \theta
\end{aligned}
$$

where: $\bar{A}_{2}(R)$ and $\bar{A}_{4}(R)$ are the intrinsic parameters of the model, θ is the angle between the C_{3} axis and metal-ligand chemical bond. In an ideal octahedron, $\theta=\arccos (1 / \sqrt{3}) \approx 54.7^{0}$; in a real (even undoped) crystal this angle differs from that value because of distortions.

For the transition metal ions in octahedral impurity centers $\bar{A}_{4}(R)=3 D q / 4$ [11].
In our calculation we use $\bar{A}_{2}(R) / \bar{A}_{4}(R) \approx 10.5$ [12].
Using the equations $(2,3,4,5,6)$ we calculate the EPR parameters and compare the results with experimental data as you can see in table 1.
Table 1. EPR parameters (zero-field splitting $D, g-$ factors $g_{\|}, g \perp$) of Cr^{3+} doped in $\mathrm{CdIn}_{2} \mathrm{~S}_{4}$

$\mathrm{CdIn}_{2} \mathrm{~S}_{4}$	$D\left(\mathrm{~cm}^{-1}\right)$	$g_{\\|}$	g_{\perp}
Calculated (a)	-0.186	1.974	1.972
Experimental (b)	-0.187	1.995	2.000

a) This paper b) Paper [13]

3. Conclusion

This work presents a cluster approach for the calculation of the EPR parameters D, $\mathrm{g}-$ factors $\mathrm{g}_{\|}, \mathrm{g}_{\perp}$ for Cr^{3+} in laser crystal $\mathrm{CdIn}_{2} \mathrm{~S}_{4}$. For that we use the single spin-orbit coupling parameter model. With this model, the calculated results are found to agree well with experimental data.

References

1. R.M. Macfarlane, J. Chem. Phys. 47 (1967) 2066;
2. H. Hahn and W. Klingler, Z. Anorg. Allg. Chem. 263 (1950) 177;
3. A. Aresti, A. Congiu, Phys. State Solid., 16 (1973) 55;
4. M.Ueno, Journal Of The Physical Society Of Japan, 46 (1979) 1877;
5. Z.W. Chen, W.X. Xuan, Spectroch. A64 (2006) 628;
6. R.M. Macfarlane, J. Chem. Phys. 472066 (1967);
7. R.M. Macfarlane, Phys. Rev. B 1989 (1970);
8. Z.Y. Yang, C.Rudowicz, J. Qin, Physica B 318, 188 (2002);
9. I. S. Griffith, The Th. of Transitional-Metal Ions, Cambridge Univ. Press, London 1964;
10. D.J. Newman, B.Ng, Rep. Progr. Phys. 52, 699 (1989);
11. W.L. Yu, M. G. Zhao, Phys. Rev. B 37, 9254 (1988);
12. W.C.Zheng, Q.Zhou, Y.Mei, X.X.Wu, Opt.Mater. 27 (2004) 449;
13. Physics Letters, volume 30A, number 5, 3 november (1969) 307.
