LUMINESCENT PROPERTIES OF TiO₂: Gd³⁺, Y³⁺ OBTAIN THROUGH SOL-GEL AND HYDROTHERMAL METHODS

M. Vasile^{1, 2}, N. M. Avram¹, C. Lăzău², P. Vlăzan²

¹Department of Physics, West University of Timişoara, Romania ²National Insti. for Research and Development in Electrochemistry and Condensed Matter Timisoara, Romania

Abstract

The aim of this paper is to present the results of the synthesized TiO_2 : Gd^{3+} , Y^{3+} nanoparticles by sol-gel and hydrothermal process. Phase-pure anatase TiO_2 nanocrystallites were synthesized directly from a $TiCl_4$ aqueous solution using $C_2H_2O_4$ as an additive [1, 2]. A sol-gel was formed when a mixture of $TiCl_4$ and $C_2H_2O_4$ was heated on a water bath. Ultrafine powders of TiO_2 were formed in the anatase phase, when the gel was decomposed at room temperature [3]. These powders were analyzed by X-ray diffraction (XRD) and characterized by scanning electron microscopy (SEM). Photoluminescence (PL) and photoluminescence excitation (PLE) measurements were obtained with a conventional lamp as an excitation source [4]. The obtained results are discussed.

Keywords: anatase TiO₂, sol-gel method, hydrothermal method

1. Introduction

The catalytic properties of a multicomponent system may be strongly influenced by the composition and the preparation procedure. Heterogeneous photocatalysis is a rapidly growing research area for the mineralization of toxic organic pollutants in the environment. In this context, due of its high catalytic activity extensive research [5], [6], [7] and [8] has been carried out with TiO₂ as a photocatalyst. In order to improve the catalytic activity, some papers have dedicated on the material aspects of the photocatalysts. Despite of that TiO₂ has a great potential, the fast recombination rate of photogenerated electron–hole pairs on the surface or in the lattice hinders the commercialization of this technology. Doping of TiO₂ with transition metal ions was reported [9] [10] as a good tool to improve the photocatalytic properties and for the enhancement of visible light response.

In this paper, the sol-gel and hydrothermal methods are used for obtain the nanocrystallines TiO_2 doped with Gd^{3+} and Y^{3+} and its optical properties are investigated. TiCl₄, C₂H₂O₄, Gd₂O₃, and YCl₃ • 6H₂O were used as the starting materials.

2. Experimental

Titanium dioxide (TiO_2) is an important material as a main component of paint, pigment, cosmetics and as a support for vanadium DeNOx catalyst. The frequently used oxide

material for thin film application (because of its high refractive index and low absorption) makes it a highly interesting transparent oxide. The sol-gel and hydrothermal process are an important technique for the synthesis of optical coatings [10]. It has also been used for optical coatings, beam splitters and anti reflection coatings because of its high dielectric constant and refractive index. There are reports on its use as a humidity sensor and high temperature oxygen sensor. The three crystalline polymorphs of TiO_2 are anatase, rutile and brookite. Rutile is a thermodynamically stable phase possessing a smaller band gap energy (3.0 eV) than the anatase phase (3.2 eV). Nanocrystalline anatase is generally synthesized as hydrothermal methods and sol–gel methods using titanium alkoxides. A mixture of anatase and rutile were produced by evaporation of Ti metal in a helium atmosphere, followed by the collection and subsequent oxidation of the Ti clusters thus formed.

Since TiCl₄ is commercially available and low cost, synthesis of TiO₂ using TiCl₄ is well known as exemplified by hydrothermal and sol-gel methods. As for hydrothermal and sol-gel synthesis using TiCl₄, the experimental conditions are very harsh: there are also drawbacks, for example, high TiCl₄ concentration leads to the formation of hair-like and aggregated rutile TiO₂ while low TiCl₄ concentration results in the concurrent formation of anatase and rutile phase TiO₂. During the investigation, we have found that C₂H₂O₄ (aq. 5%)suppresses the hydrolysis of TiCl₄ aqueous solution at room temperature, and, on the other hand, room temperature peptization of a highly concentrated TiCl4 aqueous solution gives rutile nanoparticles as embryos. These findings prompted us to synthesize phase-pure anatase or rutile TiO₂ embryos as starting materials. These mixed solutions in the Teflon vessel were then placed in a stainless-steel autoclave. The sealed autoclave was placed in a thermostatic oven and heated at a temperature of 200°C for 5h.

3. Results and discussion

3.1 X-ray diffraction

Powder X-ray diffraction (XDR) was carried out using Cu K α radiation (BRUKERaxs-D8 advance diffractometer). XDR patterns of nanocrystalline TiO₂:Gd³⁺, Y³⁺ obtained from sol-gel and hydrotermal methods. Observed as in the case when TiO₂:Gd³⁺, Y³⁺ through sol-gel method appears just TiO₂ anatase, using the hydrothermal method appears TiO₂ anatase and rutile.

Fig 1. XRD pattern of Gd^{3+} , Y^{3+} doped TiO₂ nanoparticles by sol-gel and hydrothermal process

3.2 Photoluminescence

Photoluminescence (PL) measurement with Xenon flash lamp, pulsed at line frequency (50 and 60 Hz). Figures 2, 3 display the emission spectra of Y^{3+} , Gd^{3+} doped TiO₂ under 432 nm for Y^{3+} and 430 nm for Gd^{3+} irradiation. The spectra consist of sharp lines ranging from 540 to 750 nm. The largest peak of the emission line for Y^{3+} by sol-gel method is to 611.51 nm, with hydrothermal method is to 611.91 nm; for Gd^{3+} by sol-gel method is to 608.04 nm, with hydrothermal method is to 607.86 nm.

Fig. 2. 432 nm- excited PL spectra of nanocrystalline TiO_2 :Y³⁺

Fig. 3. 430 nm- excited PL spectra of nanocrystalline TiO₂:Gd³⁺

3.3 SEM- analysis

The morphology of obtained sample were observed with field emission-scanning electron microscopy (SEM). SEM images of nanocrystalline $TiO_2:Gd^{3+}$ are shown in Fig 4 (a-sol-gel method, and b-hydrothermal method), respectively in Fig. 5 is images of nanocrystalline $TiO_2:Y^{3+}$ (a-sol-gel method, and b-hydrothermal method).

Fig. 4. SEM image of nanocrystalline $TiO_2:Gd^{3+}$ a) sol-gel method, b) hydrothermal method

Fig. 5. SEM image of nanocrystalline $TiO_2: Y^{3+}$ a) sol-gel method, b) hydrothermal method

4. Conclusions

Synthesis and characterization nanocrystalline TiO2:Y³⁺, Gd³⁺ by sol-gel and hydrothermal methods has done and their luminescent properties have investigated. The largest peak of the emission line for Y³⁺:TiO₂ obtained by sol-gel method is situated at 611.51nm whiles the same peak in the case of Y³⁺:TiO₂ obtained by hydrothermal method were placed at 611.91nm; for Gd³⁺:TiO₂ obtained by sol-gel method the peak is placed at 608.04nm whiles for the same nanocrystal obtained by hydrothermal method it is at 607.86nm.

Acknowledgements

We want to thanks to P. Barvinschi, E. Fagadar and P. Sfirloaga for XRD, PL and SEM measurements.

References

- 1. Zhili Ding, Mingfu Zhang and Jiecai Han, Mater.Phys.Mech. 4, 107-110, (2001);
- 2. Hengbo Yin, Yuji Wada, Takayuki Kitamura, Takayuki Sumida, Yasuchika Hasegawa and Shozo Yanagida, J. Mater. Chem., 378–383, 12, 2002;
- 3. S R Dhage, S P Gaikwad and V Ravi, Bull. Mater. Sci., Vol. 27, No. 6, pp. 487–489,2004;
- J. S. Kim, A. K. Kwon, I. S. Kim, H. L. Park, G. C. Kim, S. do Han, J. Lum., 122-123, 851 (2007).
- 5. M.R. Hoffmann, S.T. Martin, W. Choi and D.W. Bahnemann, Chem. Rev. 95 (1995), p.69
- 6. D.F. Ollis and N. Serpone In: N. Serpone *et al.*, Editors, *Photocatalysis: Fundamentals and Applications*, Wiley Interscience (1989), pp. 603–638
- 7. D.F. Ollis, C.Y. Hsiao, L. Budiman and C.L. Lee, J. Catal. 88 (1984), p. 89
- 8. R.W. Mathews, J. Catal. 111 (1988), p. 264.
- 9. N. Serpone and D. Lawless, Langmuir 10 (1994), p. 643
- 10. K.E. Karakitsou and X.E. Verykios, J. Phys. Chem. 97 (1993), p. 1184