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Abstract 

In this paper we describe several algorithms to tag the bottom quarks which are used at the future 
International Linear Collider (ILC). Identification of the b-quarks is an essential task since many 
important channels in collider experiments at LHC or ILC energies contain bottom quarks. We also 
combine different algorithms using the Neural Network of the MATLAB tool in order to improve the 
efficiency of the individual algorithms. 

 

1. Introduction 

In reference [1] we explained that heavy-flavour tagging means the identification of jets 

originating from quarks with high mass such as bottom quarks (b) or charm quarks (c). In that 

paper we studied particularly the b-tagging because, among others, b-jets are signatures for 

important channels in HEP experiments like bWtbbH →→  , , or for SUSY particles. 

Several algorithms can be used to tag the b-jets, based on their properties [1,2], such as 

the Impact Parameter Joint Probability Tag, the Tear Down Secondary Vertex Finder and the 

topological vertex finder called ZVTOP. In this paper we will continue our work from [1] and 

discuss the third algorithm and how to improve it using the MATLAB Neural Nets package. 

 

2. Method and samples 

2.1. The topological vertex finder ZVTOP from SIMDET as b-tagging algorithm 

SIMDET [3] is a fast simulator of the International Linear Collider detector response for 

an −+
ee  process. It takes signal hits from generated events (by default Pythia events), free 

format read cards (FFRC) are used for steering the program and it reconstructs the tracks, 

providing, among others, arrays with vertex positions. SIMDET provides two types of 

topological vertex reconstruction algorithms: for the CCD (Charge Couple Device) vertex 

detector, respectively for the APS (Active Pixel Sensor) vertex detector. The package ZVTOP 

can be used if we include the external package SINT [4]. ZVTOP provides vertex finding, 

vertex resolving and vertex fitting, the output representing one or more reconstructed vertices. 

The scope of the ZVTOP algorithm is to separate b from c jets by cutting on the corrected 
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secondary vertex mass to be higher than a certain value. ZVTOP includes also a Neural 

Network approach which we currently try to enhance with Neural Nets from MATLAB. 

 

2.2. Using MATLAB Neural Nets to improve SINT ZVTOP b-tagging performance 

2.2.1. Introduction to MATLAB Neural Nets 

A Neural Net is composed of one or 

more interconnected layers of Neurons. It 

accepts an arbitrary number of inputs and 

provides one single output by taking into 

account all cross effects between the inputs. 

For each Neuron with N inputs we have the 

output being a function of the so called 

activation value and the activation value is 

given 

          Figure 1 General architecture of a Neural Net 

by the formula ∑
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, where in are the inputs, wn is the weight for each input, b is 

the associated bias to each input (-1 by default) and f is a threshold function. Let us consider  

a to be the activation value. We can use the following transfer functions [5]: 
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Figure 2. Log-Sigmoid Function 
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Figure 3. Linear Function 

 

f(a) = tanh(sxa), s = scale 

 

Figure 4. Tan-Sigmoid Function

 

Training the Neural Nets 

Calculating the weights is the important part, known as training the neural net. It 

differentiates a well performing network from a bad one. The principle is to provide inputs of 

which we know the answer to and the weights are being changed until the output is the 

desired one, such that the network is formed. Then we simulate the network response with the 
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current data. For good training we need a large amount of data for a 1 loop algorithm or many  

epochs (number of iterations) for an algorithm that loops over itself. 

Batch Gradient Descent: TRAIN and TRAINGD command 

We add several inputs one at a time and determine the gradient of the error between the 

generated output and the desired output. The 

weights and biases are updated after all the data 

was provided, until it reaches the desired goal, 

with the relation wk+1 = wk-αkgk, where αk is the 

learning rate and gk  is the gradient. The training 

is stopped when the number of epochs, or the 

goal (minimum error), the                                     Figure 5. Back Propagation Algorithm [4] 

minimum gradient or the maximum  time allowed is  

reached. Extra attention is needed when choosing the learning rate, because if it is too large, 

the algorithm becomes unstable, and if it is too small, algorithm takes a longer time. 

 

2.2.2. Applying MATLAB Neural Nets to SIMDET 

We add in SIMDET the extra package SINT in order to use the ZVTOP algorithm. We 

switch off the already installed Neural Nets (NN) from ZVTOP, with the FF Read Cards, 

keeping the results generated by ZVTOP that are not from the NN. We change the output of 

ZVTOP from a histogram text one, calculate the flavor tag variables as indicated below, and 

input them to the Neural Nets from MATLAB. 

 

Tabel 1. Flavor-tag variables transformed to be in the range [-1,1], from reference [2]. 

Flavor tag variable Expression Description 
Impact parameter joint 

probabilities 
 

Always used 

Track impact parameter 

significances 
   

Used when there are  no 

secondary vertices  

Vertex decay length significance 
 

L divided by it’s measurement 

error 

Vertex decay length 

 
 Distance from primary vertex to 

2
nd

 or 3
rd

 vertex 

Vertex mass 

 
 Pt corrected vertex invariant 

mass; MOST POWERFUL 

Vertex momentum Always used 

Secondary vertex multiplicity  Total tracks in 2
nd

 and 3
rd

 vertices 

Secondary vertex probability  

 
 Probability that all tracks 

assigned to secondary vertices 

come from one common vertex 
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Regarding the current Matlab Neural Network architecture implemented, we use three 

Neural Nets for b-tagging: one for 1-vertex sample (B-Hadron at the primary vertex), one for 

two-vertices sample (B-Hadron at the secondary vertex) and one for the three or more vertices 

sample (B-Hadron at the 3rd or further vertex). 

Each of the nets has 8 inputs (8 chosen flavor tag variables from table 1),  an 

intermediate Layer1 with 14 neurons and the output Layer2 with 1 neuron,  meaning how 

much probable the jet is to be generated by a bottom quark. 

Each Neuron has the Log-Sigmoid Transfer Function shown in figure 2, and the 

network uses the Batch Gradient Descend training algorithm, a type of Back Propagation 

algorithm, looping over itself. 

 

 

 

 

 

 

 

Figure 6. Structure of Layers and Neurons used in the simulation 

 

2.2.3. Summary of the algorithm 

We present in the following the complete algorithm flow: 

1) Generate data with Pythia; 

2) Read MonteCarlo true jet flavor and Input Data; 

3) Simdet determines calorimeter and energy flow information;  

4) ZVTOP finds vertices, interaction points, estimates flavours and applies kinematical 

cuts; 

5) SINT calculates inputs flavor tag for Neural Network; 

6) Train the MATLAB NNs as long as they are not sufficiently trained for b flavour tag; 

7) Use pre-trained MATLAB Neural Networks to obtain the b flavour tag; 

8) Calculate b-tagging purity and efficiency based on the MATLAB NN output. 

Production of summary histograms 

Efficiency represents the number of detected b flavours divided by the total number of the 

Monte Carlo b flavours produced originally and the purity is the number of real b flavours out 

of the detected ones divided by the total number of detected b flavours. 
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3. Results and Discussion  

We evaluate the performance of each of the 3 networks, comparing them with the 

ZVTOP algorithm based solely on the invariant mass tag. The performance should be at least 

as the one in reference [2]: at high purity, NN should have similar performance to ZVTOP, at 

high efficiency, NN should have 10-15% more performance, as in figure 7. 

 

 

Figura 7. Efficiency vs. purity for b and c tags in qqZ →0 decays. Comparison between the 

ZVTOP vertex mass tagging and the ZVTOP NN tagging, from reference [2]. 

 

Next, we should run the MATLAB Neural Network and compare the performance with 

the one in figure 7. To see which architecture fits best, we should then vary the number and 

types of neurons. For a better training, we should add more events, and for better 

performance, create new kinematical cuts and eventually check to eliminate badly 

reconstructed tracks from ZVTOP. 

 

4. Conclusions  

The maximum purity is limited due to the relatively small size of the NN training 

sample (60.000 events) and badly reconstructed tracks by the ZVTOP algorithm. Running the 

Neural Networks may take a large amount of computing time and memory due to the high 

number of parallel processes. 
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