

 108

Analele Universităţii de Vest din Timişoara

Vol. L, 2007

Seria Fizică

B-TAGGING ALGHORITMS FOR THE ILC

Madalina Stanescu-Bellu, Aura Rosca

West University of Timisoara, Faculty of Physics, Bd. V. Parvan 4, 300223 Timisoara

Abstract

In this paper we describe several algorithms to tag the bottom quarks which are used at the future
International Linear Collider (ILC). Identification of the b-quarks is an essential task since many
important channels in collider experiments at LHC or ILC energies contain bottom quarks. We also
combine different algorithms using the Neural Network of the MATLAB tool in order to improve the
efficiency of the individual algorithms.

1. Introduction

In reference [1] we explained that heavy-flavour tagging means the identification of jets

originating from quarks with high mass such as bottom quarks (b) or charm quarks (c). In that

paper we studied particularly the b-tagging because, among others, b-jets are signatures for

important channels in HEP experiments like bWtbbH →→ , , or for SUSY particles.

Several algorithms can be used to tag the b-jets, based on their properties [1,2], such as

the Impact Parameter Joint Probability Tag, the Tear Down Secondary Vertex Finder and the

topological vertex finder called ZVTOP. In this paper we will continue our work from [1] and

discuss the third algorithm and how to improve it using the MATLAB Neural Nets package.

2. Method and samples

2.1. The topological vertex finder ZVTOP from SIMDET as b-tagging algorithm

SIMDET [3] is a fast simulator of the International Linear Collider detector response for

an −+
ee process. It takes signal hits from generated events (by default Pythia events), free

format read cards (FFRC) are used for steering the program and it reconstructs the tracks,

providing, among others, arrays with vertex positions. SIMDET provides two types of

topological vertex reconstruction algorithms: for the CCD (Charge Couple Device) vertex

detector, respectively for the APS (Active Pixel Sensor) vertex detector. The package ZVTOP

can be used if we include the external package SINT [4]. ZVTOP provides vertex finding,

vertex resolving and vertex fitting, the output representing one or more reconstructed vertices.

The scope of the ZVTOP algorithm is to separate b from c jets by cutting on the corrected

 109

secondary vertex mass to be higher than a certain value. ZVTOP includes also a Neural

Network approach which we currently try to enhance with Neural Nets from MATLAB.

2.2. Using MATLAB Neural Nets to improve SINT ZVTOP b-tagging performance

2.2.1. Introduction to MATLAB Neural Nets

A Neural Net is composed of one or

more interconnected layers of Neurons. It

accepts an arbitrary number of inputs and

provides one single output by taking into

account all cross effects between the inputs.

For each Neuron with N inputs we have the

output being a function of the so called

activation value and the activation value is

given

 Figure 1 General architecture of a Neural Net

by the formula ∑
=

×+×
N

n

bnn wbwi
1

, where in are the inputs, wn is the weight for each input, b is

the associated bias to each input (-1 by default) and f is a threshold function. Let us consider

a to be the activation value. We can use the following transfer functions [5]:

f(a)=
a

e
−+1

1

Figure 2. Log-Sigmoid Function









−−−−≤≤≤≤−−−−

≥≥≥≥++++

====

otherwisegivenSlopea

givenSlopea

givenSlopea

af

,/

1/,1

1/,1

)(

Figure 3. Linear Function

f(a) = tanh(sxa), s = scale

Figure 4. Tan-Sigmoid Function

Training the Neural Nets

Calculating the weights is the important part, known as training the neural net. It

differentiates a well performing network from a bad one. The principle is to provide inputs of

which we know the answer to and the weights are being changed until the output is the

desired one, such that the network is formed. Then we simulate the network response with the

 110

current data. For good training we need a large amount of data for a 1 loop algorithm or many

epochs (number of iterations) for an algorithm that loops over itself.

Batch Gradient Descent: TRAIN and TRAINGD command

We add several inputs one at a time and determine the gradient of the error between the

generated output and the desired output. The

weights and biases are updated after all the data

was provided, until it reaches the desired goal,

with the relation wk+1 = wk-αkgk, where αk is the

learning rate and gk is the gradient. The training

is stopped when the number of epochs, or the

goal (minimum error), the Figure 5. Back Propagation Algorithm [4]

minimum gradient or the maximum time allowed is

reached. Extra attention is needed when choosing the learning rate, because if it is too large,

the algorithm becomes unstable, and if it is too small, algorithm takes a longer time.

2.2.2. Applying MATLAB Neural Nets to SIMDET

We add in SIMDET the extra package SINT in order to use the ZVTOP algorithm. We

switch off the already installed Neural Nets (NN) from ZVTOP, with the FF Read Cards,

keeping the results generated by ZVTOP that are not from the NN. We change the output of

ZVTOP from a histogram text one, calculate the flavor tag variables as indicated below, and

input them to the Neural Nets from MATLAB.

Tabel 1. Flavor-tag variables transformed to be in the range [-1,1], from reference [2].

Flavor tag variable Expression Description
Impact parameter joint

probabilities

Always used

Track impact parameter

significances

Used when there are no

secondary vertices

Vertex decay length significance

L divided by it’s measurement

error

Vertex decay length

 Distance from primary vertex to

2
nd

 or 3
rd

 vertex

Vertex mass

 Pt corrected vertex invariant

mass; MOST POWERFUL

Vertex momentum Always used

Secondary vertex multiplicity Total tracks in 2
nd

 and 3
rd

 vertices

Secondary vertex probability

 Probability that all tracks

assigned to secondary vertices

come from one common vertex

 111

Regarding the current Matlab Neural Network architecture implemented, we use three

Neural Nets for b-tagging: one for 1-vertex sample (B-Hadron at the primary vertex), one for

two-vertices sample (B-Hadron at the secondary vertex) and one for the three or more vertices

sample (B-Hadron at the 3rd or further vertex).

Each of the nets has 8 inputs (8 chosen flavor tag variables from table 1), an

intermediate Layer1 with 14 neurons and the output Layer2 with 1 neuron, meaning how

much probable the jet is to be generated by a bottom quark.

Each Neuron has the Log-Sigmoid Transfer Function shown in figure 2, and the

network uses the Batch Gradient Descend training algorithm, a type of Back Propagation

algorithm, looping over itself.

Figure 6. Structure of Layers and Neurons used in the simulation

2.2.3. Summary of the algorithm

We present in the following the complete algorithm flow:

1) Generate data with Pythia;

2) Read MonteCarlo true jet flavor and Input Data;

3) Simdet determines calorimeter and energy flow information;

4) ZVTOP finds vertices, interaction points, estimates flavours and applies kinematical

cuts;

5) SINT calculates inputs flavor tag for Neural Network;

6) Train the MATLAB NNs as long as they are not sufficiently trained for b flavour tag;

7) Use pre-trained MATLAB Neural Networks to obtain the b flavour tag;

8) Calculate b-tagging purity and efficiency based on the MATLAB NN output.

Production of summary histograms

Efficiency represents the number of detected b flavours divided by the total number of the

Monte Carlo b flavours produced originally and the purity is the number of real b flavours out

of the detected ones divided by the total number of detected b flavours.

 112

3. Results and Discussion

We evaluate the performance of each of the 3 networks, comparing them with the

ZVTOP algorithm based solely on the invariant mass tag. The performance should be at least

as the one in reference [2]: at high purity, NN should have similar performance to ZVTOP, at

high efficiency, NN should have 10-15% more performance, as in figure 7.

Figura 7. Efficiency vs. purity for b and c tags in qqZ →0 decays. Comparison between the

ZVTOP vertex mass tagging and the ZVTOP NN tagging, from reference [2].

Next, we should run the MATLAB Neural Network and compare the performance with

the one in figure 7. To see which architecture fits best, we should then vary the number and

types of neurons. For a better training, we should add more events, and for better

performance, create new kinematical cuts and eventually check to eliminate badly

reconstructed tracks from ZVTOP.

4. Conclusions

The maximum purity is limited due to the relatively small size of the NN training

sample (60.000 events) and badly reconstructed tracks by the ZVTOP algorithm. Running the

Neural Networks may take a large amount of computing time and memory due to the high

number of parallel processes.

Acknowledgements

This work was supported by the CEEX Program of the Romanian Ministry of

Education, Research and Youth, under contracts D81 and 118/01.08.2006.

 113

References

1. M. Stanescu-Bellu, A.Rosca, “Heavy Flavor Tagging for Linear Colliders”, presented at

Students’ Conference of Science and Technology, 18 May 2007, Ann. UVT, in press

2. R. Hawkings, “Vertex detector and flavor tagging studies for the TESLA linear collider”,

LC-PHSM-2000-021-TESLA, February 20, 2000

3. M. Pohl, H.J. Schreiber, “SIMDET – a Parametric Monte Carlo for a TESLA Detector”,

LC-DET-2002-005, 2002.

4. T.Kuhl, K Harder, “ZVTOP-B Hadron Tagger for SIMDET”, http://irfu.cea.fr/ecfadesy-

stmalo/Higgs/session1/kuhl.ps/; /afs/desy.de/user/k/kuhl/public/sint/

5. MATLAB Neural Networks Toolbox User’s Guide,

http://www.mathworks.com/access/helpdesk/help/toolbox/nnet/

