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Abstract
An irreducible canonical approach to third-order reducible second-class constraints is given. The

procedure is illustrated on gauge-fixed 4 -forms.

1. Introduction

The canonical approach of the systems with reducible second-class constraints
represents a difficult problem (not all the second-class constraint functions are independent),
demanding a modification of the usual rules as the matrix of the Poisson brackets among
constraints is no longer invertible.

In order to construct the Dirac bracket for such systems in a consistent manner we
have the three options: to isolate a maximally set of independent constraint functions and then
build the Dirac bracket in terms of this smaller set Eroare! Fiara sursa de referinta.-
Eroare! Fira sursa de referinta., the second option is to construct the Dirac bracket in terms
of a noninvertible matrix without separating the independent constraint functions
Eroare! Fara sursa de referinti.-Eroare! Fara sursa de referinta. and the third possibility
is to substitute the reducible second-class constraints by some equivalent irreducible ones [by
an appropriate enlarging of the original phase-space] and further work with the Dirac bracket
based on the irreducible constraints FEroare! Fara sursa de referinta.-

Eroare! Fara sursa de referinta.. The procedure is illustrated on gauge-fixed 4 -forms.

2. Third-stage reducible second-class constraints

Our starting point is a system with the phase-space locally parametrized by N

a

canonical pairs z“ = (qi , pl.) subject to the third-stage reducible second-class constraints

Zao(za)z(), a,=1,M,,
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Zal Zao =O’ C(1=1,M1, (2)

21z, =0,a,=1,M,, 3)
a a

2,525 =0,a,=1.M,, 4)

These constraints are purely second-class if any maximal, independent set of

M =M,-M,+M,—M, constraint functions y,, A=1,M among the ¥, is such that the

matrix
Cous = Xas X515 ()
is invertible. In terms of such a set of independent constraints, the Dirac bracket takes
the form
F,G] =[F,G]=[F, x, )M " 15.G], (6)
where M**C,. = &,. The split of the constraints may lead to the loss of important

symmetries, so it should be avoided.
A second idea is to construct the Dirac bracket in terms of a noninvertible matrix
without separating the independent constraint functions. In this sense, we denote the matrix of

the Poisson brackets among the second-class constraint functions by

C, g = a2} (7)
The matrix C 3 is not invertible because
0/~0

2%
2l

Z,°C , =0. 8
“oﬁo ®
If AMOOC1 stand for some functions that satisfy

rank(ZaaOZa’Bl) = rank(Da’Blj =M,-M,+M,, )
1 0 1

. . - v - . - (27
then we can introduce another matrix Eroare! Fara sursa de referinta. M oy

through the relations

7’0ﬁ0~ :30
Cooyy, M0 =D, (10)

with M b =—M" 0% , such that the bracket

[F.6] =[F.G]-|F.z, M, .G] (an
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defines the same Dirac bracket like (6) on the surface (1), where

D,B0=§:30_ZIB1Z:B0_ (12)
% % % A

3. The model
We consider the canonical approach to gauge-fixed four-forms, described by the

Lagrangian action
L[ ] D 1 Uvpio
SO A/wpﬂ = _J-d X 2.5) F/wpﬂaF s (13)

where
F,uvpﬂo = a,uAvpﬂa]’ (14)
and D=>5. Everywhere in this paper the notation [...v] signifies complete

antisymmetry with respect to the indices between brackets, with the conventions that the
minimum number of terms is always used and the result is never divided by the number of

terms. The canonical analysis of this model leads to the first-class constraints

il

=7 =0, (15)

0yl
A = a0, (16)
ilyl kil
where the momentum 7z, are respectively conjugated to A"P* 1In order to fix the
gauge, we have to choose a set of canonical gauge conditions. An appropriate set of such
gauge conditions is given by
G = g1 g, (17)
1(2)71]'2].3 = _akAkJiJ'z]}' (18)
The relations (15)-(18) represent nothing but some third-stage reducible second-class
constraints. It is simple to see that (15) and (17) generate a submatrix (of the matrix of the
Poisson brackets among the constraint functions) of maximum rank, therefore they are not

relevant by virtue of our approach. Thus in the following we examine only the constraints

(16) and (18), which we organize as

(1)
= Z’iiziz =0. (19)

“ I(z)jljZ.jS

The second-class constraint functions from (19) are third-stage reducible, with the

first-, second- and third-stage reducibility functions given by
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1 i iy o]
e _|30005 0
L,

Q;
1 Zl

0 515}
Lsthgal g
Zaal |2 ™M
’ 0 Pr)
1 12

and respectively

a (9" 0
Zl = .
“ [o 9,

The matrix of the Poisson brackets among the constraints (19) is expressed by

0
il

9

O ADk‘ll‘CZk3
C ,= L ials
0’0:60 _AD]1]2]3 0 ’
libyts
where
o o shgha slinghgs]
DJ.1J.2J3=i 5hel2s7s T T Tk TR
i3 31 T Tl 2A
and A=90, .

3.1 "Reducible' Dirac bracket

Now, we construct the Dirac bracket with respect to the constraints (19). In order to

construct the matrices Da(’)B 0 (12), we take Kaf !

1 5k1 5k2

—0.10. 29 0
aB_jan T2 Tl ]
% 0 1 5[]15]28j3]
2A 7
Then, by means of (12) we find
Dk.ll'(2k3 0
D 5, _| kb |
% J1J2J3
0 D’llzl3

Using (23) and (26) it follows that (10) is fulfilled for
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1 i,

0 -—D
M”‘oﬁo — A ko ) (27)
iDlllglq 0
A s

With M o at the hand, we can construct the Dirac bracket by means of formula (11)

. After some computation, we find that the only non-vanishing fundamental Dirac brackets are

Aol o } = phbhls sp1(3_y 28
[ (X)’E/i]z]ah(y) 0=y0 JaJzJs (x y)’ (28)
where
sth 52 shgil sk 552 553
i, _ 1| giisinsivsis O %2 %0 00 % %0, 29)
11j2j3j4_4! W T A ’

In this way, the Dirac analysis (reducible) of this model is completed.

4. Irreducible analysis

In this section we reobtain the Dirac bracket (28) but in an irreducible manner.

4.1. Original phase-space approach

Initially, we investigate the problem of the construction of Dirac bracket for our model
in the original phase-space in terms of an invertible matrix.

It can be proved that for systems with third-stage reducible second-class constraints
the Dirac bracket can be written in terms of an invertible matrix.

Theorem 1 There exists an invertible antisymmetric matrix ,uyoéo such that the Dirac

bracket (11) takes the form
[F.G] =[F.G]- [F,;a,o oAt [zﬁo,G], (30)
on the surface. (1).

In the case of our model the matrix ,uyo(so takes the form

_ Lo o, oy
0’0160 _ 0 31A 5k1 5k2 5"3]
P . 31)
1 5[11512513] 0
1A % %0 %

By computing the fundamental Dirac bracket with the help of (30), we reobtain precisely (28).
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4.2.Extended phase-space approach
In the sequel we construct some equivalent irreducible second-class constraints
associated with (1) such that the Dirac bracket constructed with respect to irreducible set

coincides with the Dirac bracket corresponding to the reducible second-class model.

Firstly we introduce some new variables (yal) 1M and (ya3) with the
=M

a3:1 5 M3
Poisson brackets
lyal’yﬁll=a)alﬁl’ lya37yﬁ3j=wa3ﬁ37 lya17ya3J=0’ (32)
where the elements @ B define an invertible, antisymmetric matrix (similar for
b Vag|

@ B ), and consider the system subject to the reducible second-class constraints
3773

Z(z zO’ y(z zO’ ya zO (33)
The Dirac bracket on the phase-space locally parametrized by (z“, Yoy ya3)
corresponding to the above second-class constraints reads as

761 =Ir.6l-[F.z, P [z, 6]
zy (34)

— [F, Ve, ]a)"’hBl [yﬁl , G]— [F, Ve, ]wa3153 [yﬁ3 , Gl

where the Poisson brackets from the right-hand side of (34) contain derivatives with

respect to all z“'s, Ve, 's and Ve, 's. After some computation we infer that

[F.G]| =[F.G], (35)

Z,y
where [F,G] is given by (30).

Under these considerations, we are able to formulate the following theorem.
Theorem 2 There exists a set of constraints

5 - Q, _
Zao = Zao + Aao y(zl - O’ (36)

~ o a
}(az EZ,I21ywl+sz3yw3 =0, (37)

such that:
i) (36)-(37) is equivalent with (33) [this means that both sets describe the same

surface in the enlarged phase-space]

Xa, =0, Ka, =0 Xa, =0, Ve, =0, Ve, =0; (38)
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ii) second-class behavior, i.e. the matrix

C. =21 (39)
is invertible, where

Xy =\Zay- 2o, ) (40)
iii)irreducibility.
The functions A%Ot1 are defined by the relation

7T & ~O
Aao = Aaoﬁleﬁll’ (41)

where ég‘ are the elements of an invertible matrix. In the formula (37) Af: 3 are some

functions that satisfy
rank(Z%O{2 Aa;B 3) = rank(Da;B 3) =M,, (42)

The existence of such functions is guaranteed by the fact that the second-class
constraints (1) are third-stage reducible (2)-(4).

The matrix C takes the concrete form

Y.
C = 0’0:30 a :31 (43)
20 o, 54 A zl o, 2 Prya® Yo, 5 A A
where A = (a'o, afz) indexes the line and A = (,50, ,32) the column and its inverse reads
as
o luﬁopo 7 ﬂog%aﬁﬂlz P
CAA _ n o A , (44)
Zalﬁz a)"l/?'l éz:l Zylpo l///fzpz
where we used the notation
l/j/fzpz — Zalﬁz w"ﬂl Zﬂlpz + 20:362 5/130-3 w%faﬁrz/a Z}Ifz (45)

By means of result (44), the Dirac bracket associated with the irreducible second-class

constraints (36)-(37)

-[F.6]-[F.2,)c* [z,.6) (46)

takes the concrete form
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= [F.G]- [F, Za, lu"’oﬂo [ZﬁO,G]

- :F’/?ao ]Zylao é‘z_? w“l& Zﬂlﬂz [/?ﬂz , G]

[F.G]

ired

-|F. Ze, Jx % w"l%}fzﬁﬁo [;zﬁo,G] 47)

1

_ _F, /?az IZGI% aﬁﬂl Z/llﬂz

=0, 20wV, B\~

The matrix Eﬁf3 is the inverse of Da;B 3,

Theorem 3 The Dirac bracket with respect to the irreducible second-class

constraints, (47), coincides with that of the intermediate system (33)

~[F,G]

ired

[F.G] (48)

2,y

5. "Irreducible' Dirac bracket

In order to construct the irreducible second-class constraints for our model we

introduce the new variables Ve and Ve,

Yoy = lejz’ Ya, = ¢’

and take
o -1 figls 0 1
21 h -
W ,= L , w = . 50
alﬁl lﬁjldh 0 0!3ﬁ3 (1 OJ ( )
27 Thl

In the analyzed model the functions A%Ot1 and Aaza3 are given by

0|00 0
A%=] 2 Yl 51)
0 _25 ]15]2813]
6 1 h
A% =[3(;1 ;], (52)

Then, the equivalent irreducible second-class constraints are expressed by

;?(1) =497 .. -9.P.,=0, (53)

ilol kidoly i il ]
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2(2)1'1]'2]'4 - _alAlj1j2j3 _%aj1Bj2j3]’ 54)

(1)

0
A E_akPlci1+ailp’ (55)

1
@),

0 _ _
x  =-20B"+3"¢. (56)
Now, we construct the Dirac bracket with respect to the irreducible second-class

. . ‘A N7
constraints (53)-(56). In order to construct the elements of the matrix CAA , we choose .eﬁl1

and Z;ﬁ% like
1

—i(s;;a:z] 0
et = R (57)
__* shsh
0 A §k1 §k2]
— IB ld{qa ] 0
A/J’12=A i T (58)
0 _5[ Jlafz
2A 1
. =0
The matrix D/,),3 3 reads as
1
— 0
D% =|A (59)
By 17
0 _
A

If we compute the Dirac bracket among the original field/momenta on behalf of (47),
we reobtain the same fundamental non-vanishing Dirac brackets like in the reducible

situation, namely, (28).

6. Conclusion
In this paper we have presented some equivalent approaches for the problem of the
derivation of the Dirac bracket for a system with third-order reducible second-class

constraints. Our strategy includes three main steps. First, we construct the Dirac bracket in
terms of a noninvertible matrix M %l 0. Second, we derive the Dirac bracket based on an

invertible matrix ,uaO’B 0. Third, we substitute the original second-class constraints by some

equivalent irreducible ones in an enlarged phase-space and the Dirac bracket in this case is
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equivalent with those in the above mentioned approaches. The general procedure was

exemplified on gauge-fixed 4 -forms.
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