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Abstract 

An irreducible canonical approach to third-order reducible second-class constraints is given. The 
procedure is illustrated on gauge-fixed 4 -forms.  

 

1. Introduction 

The canonical approach of the systems with reducible second-class constraints 

represents a difficult problem (not all the second-class constraint functions are independent), 

demanding a modification of the usual rules as the matrix of the Poisson brackets among 

constraints is no longer invertible. 

In order to construct the Dirac bracket for such systems in a consistent manner we 

have the three options: to isolate a maximally set of independent constraint functions and then 

build the Dirac bracket in terms of this smaller set Eroare! Fără sursă de referinţă.-

Eroare! Fără sursă de referinţă., the second option is to construct the Dirac bracket in terms 

of a noninvertible matrix without separating the independent constraint functions 

Eroare! Fără sursă de referinţă.-Eroare! Fără sursă de referinţă. and the third possibility 

is to substitute the reducible second-class constraints by some equivalent irreducible ones [by 

an appropriate enlarging of the original phase-space] and further work with the Dirac bracket 

based on the irreducible constraints Eroare! Fără sursă de referinţă.-

Eroare! Fără sursă de referinţă.. The procedure is illustrated on gauge-fixed 4 -forms. 

 

2. Third-stage reducible second-class constraints 

Our starting point is a system with the phase-space locally parametrized by N  

canonical pairs ( )
i

ia
pqz ,=  subject to the third-stage reducible second-class constraints  

 ( ) ,1,=0, 000
Mz

a αχα ≈  (1) 
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 ,1,=0,= 110

0

1
MZ αχ

α
αα  (2) 

 ,1,=0, 22
0

1

1

2
MZZ α

αα
αα ≈  (3) 

 ,1,=0, 33
1

2

2

3
MZZ α

αα
αα ≈  (4) 

These constraints are purely second-class if any maximal, independent set of 

3210 MMMMM −+−≡  constraint functions Aχ , MA 1,=  among the 
0αχ is such that the 

matrix  

 ],,[= BAABC χχ  (5) 

is invertible. In terms of such a set of independent constraints, the Dirac bracket takes 

the form  

 ],,[],[],[=], GMFGFGF B

AB

A χχ−∗  (6) 

where A

CBC

AB
CM δ≈ . The split of the constraints may lead to the loss of important 

symmetries, so it should be avoided. 

A second idea is to construct the Dirac bracket in terms of a noninvertible matrix 

without separating the independent constraint functions. In this sense, we denote the matrix of 

the Poisson brackets among the second-class constraint functions by  

 ].,[=
0000

βαα
χχβC  (7) 

The matrix 
00βα

C  is not invertible because  

 0.
00

0

1
≈β

α
αα CZ  (8) 

If 1

0

α
αA  stand for some functions that satisfy  

 ,=rankrank 321
1

1

1

0

0

1
MMMDAZ +−







≡






 ββα
ααα  (9) 

then we can introduce another matrix Eroare! Fără sursă de referinţă. 00βα
M  

through the relations  

 ,0

0

00

00

ββ
γ α

γ

α DMC ≈  (10) 

with 0000 =
αβ βα

MM − , such that the bracket  

 [ ] [ ] [ ] [ ],,,,=,
0

00

0
GMFGFGF β

α

α χ
β

χ−
∗  (11) 



 

 100 

defines the same Dirac bracket like (6) on the surface (1), where  

 .= 0

1

1

0

0

0

0

0

βββ
δ

β
βααα ZAD −  (12) 

 

3. The model 

We consider the canonical approach to gauge-fixed four-forms, described by the 

Lagrangian action  

 [ ] ,
5!2

1
=0

µνρλσ
µνρλσµνρλ FFxdAS

DL

⋅
−∫  (13) 

where  

 ,= ]νρλσµµνρλσ AF ∂  (14) 

and 5≥D . Everywhere in this paper the notation ][ νµK  signifies complete 

antisymmetry with respect to the indices between brackets, with the conventions that the 

minimum number of terms is always used and the result is never divided by the number of 

terms. The canonical analysis of this model leads to the first-class constraints  

 ( ) 0,1
321021

≈≡
iii

G
ii

π  (15) 

 ( ) 0,41
321321

≈∂−≡
iiii ki

k

i
πχ  (16) 

where the momentum µνρλπ  are respectively conjugated to µνρλA . In order to fix the 

gauge, we have to choose a set of canonical gauge conditions. An appropriate set of such 

gauge conditions is given by  

 
( )

0,3210212
≈≡

jj
A

j
G

jj
 (17) 

 
( )

.3213212 jj
A

jj kj

k

j
−∂≡χ  (18) 

The relations (15)-(18) represent nothing but some third-stage reducible second-class 

constraints. It is simple to see that (15) and (17) generate a submatrix (of the matrix of the 

Poisson brackets among the constraint functions) of maximum rank, therefore  they are not 

relevant by virtue of our approach. Thus in the following we examine only the constraints 

(16) and (18), which we organize as  

 
( )

( )
0.

1

3212
321

0
≈
















≡

jj
ii

j

i

χ

χ
χα  (19) 

The second-class constraint functions from (19) are third-stage reducible, with the 

first-, second- and third-stage reducibility functions given by  
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 ,

]0

0
][

3
1

=

3

2

2

1

1

32

2

1

10

1
















∂

∂

jjj

i

kk

ll

ii

Z

δδ

δδα
α  (20) 

 ,

]0

0
][

2
1

=

2

1

1

21

11

2
















∂

∂

ll

k

m

n

k

Z

δ

δα
α  (21) 

and respectively 

 .
0

0
=

1

1
1

2 













∂

∂

n

m

Z
α
α  (22) 

The matrix of the Poisson brackets among the constraints (19) is expressed by  

 ,
0

0
=

321

321

321

321

00 















∆−

∆

jjj
ll

D

kkk
ii

D
C

l

i

βα
 (23) 

where  

 ,
2

][
]

]3!
1

=

32

2

1

13

2

2

1

13

3

2

2

1

1

321

321 















∆

∂∂
−

j

kkiii

iiii

jjkk

jjjjjj
ii

D

δδδδ
δδδ  (24) 

and k

k∂∂∆ = . 

 

3.1 "Reducible" Dirac bracket 

Now, we construct the Dirac bracket with respect to the constraints (19). In order to 

construct the matrices 0

0

β
αD  (12), we take 1

0

β
αA  

 .
][

12
1

0

0]4
1

=
32

2

1

1

3

2

2

1

11

0

















∂
∆

∂
∆

j

ll

iii

jj

kk

A

δδ

δδ
β

α  (25) 

Then, by means of (12) we find  

 .
0

0
=

321

321

321

3210

0 















jjj
ll

D

kkk
ii

D
D

l

iβ
α  (26) 

Using (23) and (26) it follows that (10) is fulfilled for  
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 .
0

1

1
0

=
321

321

321

32100

















∆

∆
−

lll
jj

D

iii
kk

D
M

j

kβα
 (27) 

With 00βα
M  at the hand, we can construct the Dirac bracket by means of formula (11)

. After some computation, we find that the only non-vanishing fundamental Dirac brackets are  

 ( ),=
=

)(),( 14321

4321004321

4321 yx
iiii
jjj

D
y

y
jjj

x
iii

A
D

j
x

j

i rr
−

∗





 −δπ  (28) 

where  

 ,
]

][

]4!
1

= 4

3

3

2

2

1

1

43

3

2

2

1

14

4

3

3

2

2

1

1

4321

4321 















∆

∂∂
−

jjjj

i

kkk

jjjjj

kkkiii

iiiiiiii
jjj

D

δδδδδδ
δδδδ  (29) 

In this way, the Dirac analysis (reducible) of this model is completed. 

 

4. Irreducible analysis 

In this section we reobtain the Dirac bracket (28) but in an irreducible manner. 

 

4.1. Original phase-space approach 

Initially, we investigate the problem of the construction of Dirac bracket for our model 

in the original phase-space in terms of an invertible matrix. 

It can be proved that for systems with third-stage reducible second-class constraints 

the Dirac bracket can be written in terms of an invertible matrix.  

Theorem 1 There exists an invertible antisymmetric matrix 00δµ
γ

 such that the Dirac 

bracket (11) takes the form  

 [ ] [ ] [ ] [ ]GFGFGF ,,,=,
0

00

0 β

α

α χ
β

µχ−
∗ , (30) 

on the surface. (1). 

In the case of our model the matrix 00δµ
γ

 takes the form  

 .
0][

3!
1

]3!
1

0
=

3

3

2

2

1

1

3

3

2

2

1

100

















∆

∆
−

lll

iii

jjj

kkk

δδδ

δδδ
β

µ
α

 (31) 

By computing the fundamental Dirac bracket with the help of (30), we reobtain precisely (28). 
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4.2.Extended phase-space approach 

In the sequel we construct some equivalent irreducible second-class constraints 

associated with (1) such that the Dirac bracket constructed with respect to irreducible set 

coincides with the Dirac bracket corresponding to the reducible second-class model. 

Firstly we introduce some new variables ( )
111 1,= M

y
α

α  and ( )
333 1,= M

y
α

α  with the 

Poisson brackets  

 [ ] [ ] [ ] 0,=,,=,,=,
3133331111 αααβααβα βωβω yyyyyy  (32) 

where the elements 
11β

ω
α

 define an invertible, antisymmetric matrix (similar for 

33β
ω

α
), and consider the system subject to the reducible second-class constraints  

 0.0,0,
310

≈≈≈ αααχ yy  (33) 

The Dirac bracket on the phase-space locally parametrized by ( )
31

,, αα yyz
a  

corresponding to the above second-class constraints reads as  

 
[ ] [ ] [ ] [ ]

[ ] [ ] [ ] [ ],,,,,

,,,=,

3

33

31

11

1

0

00

0,

GyyFGyyF

GFGFGF
yz

β

α

αβ

α

α

β

α

α

β
ω

β
ω

χ
β

µχ

−−

−
∗

 (34) 

where the Poisson brackets from the right-hand side of (34) contain derivatives with 

respect to all az 's, 
1αy 's and 

3αy 's. After some computation we infer that  

 [ ] [ ] ,,,
,

∗∗
≈ GFGF

yz
 (35) 

where [ ]∗GF ,  is given by (30). 

Under these considerations, we are able to formulate the following theorem. 

Theorem 2 There exists a set of constraints  

 0,~
1

1

000
≈+≡ αααα

α
χχ yA  (36) 

 0,~
3

3

21

1

22
≈+≡ ααααα

αα
χ yAyZ  (37) 

such that: 

i) (36)-(37) is equivalent with (33) [this means that both sets describe the same 

surface in the enlarged phase-space] 

 0;0,0,0~0,~
31020

≈≈≈⇔≈≈ ααααα χχχ yy  (38) 
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ii) second-class behavior, i.e. the matrix  

 ,]~,~[= ''C
∆∆∆∆

χχ  (39) 

is invertible, where 

 ( );~,~=~
20 αα χχχ ∆  (40) 

iii)irreducibility. 

The functions 1

0

α
αA  are defined by the relation 

 ,ˆ= 1

1

1

0

1

0

αβα
βαα eAA  (41) 

where 1

1
ˆαβe  are the elements of an invertible matrix. In the formula (37) 3

2

α
αA  are some 

functions that satisfy  

 ,=rankrank 3
3

3

3

2

2

3
MDAZ 







≡






 ββα
ααα  (42) 

The existence of such functions is guaranteed by the fact that the second-class 

constraints (1) are third-stage reducible (2)-(4). 

The matrix 'C
∆∆

 takes the concrete form  

 ,=
3

233

3

2

1

211

1

2

1

011

1

2

1

211

1

000

















+
∆∆ β

βω
αβ

βω
αβ

βω
α

β
βω

α
βµ

βααβααβαα

βααα

AAZZAZ

ZA
C '  (43) 

where ( )20,= αα∆  indexes the line and ( )20 ,= ββ'∆  the column and its inverse reads 

as 

 ,
ˆ

ˆ
=

220

1

1

1

112

1

2

1

111

1

0

1

00
















∆∆

ρ
ψ

ργλ
ω

β

ρλ
ω

γβρ
µ

β

γλ

σ

σ

λ

σ

σγ

β

ZeA

AeZ
C

'''

 (44) 

where we used the notation 

 2

3

3

3

333

3

2

3

2

1

112

1

22 = ργτ
ω

σβρλ
ω

βρ
ψ γτ

λ

λσλ

σ

σ

β
ZDDZAA +  (45) 

By means of result (44), the Dirac bracket associated with the irreducible second-class 

constraints (36)-(37)  

 [ ] [ ] [ ] [ ],,~~,,=,
ired

GCFGFGF '

'

∆

∆∆
∆

∗
− χχ  (46) 

takes the concrete form  
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[ ] [ ] [ ] [ ]

[ ] [ ]
[ ] [ ]

[ ]

[ ].,~

~,

,~ˆ~,

,~ˆ~,

,~~,,=,

2

2

3

3

3

333

3

2

3

2

1

112

12

0

0

1

1

1

112

12

2

2

1

111

1

0

10

0

00

0ired

GZDDZ

AAF

GZeAF

GAeZF

GFGFGF

βγτ

λ

λσ

λ

σ

σα

βγλ

σ

σα

βλ

σ

σγα

β

α

α

χ
βγτ

ω
σα

βλ
ω

α
χ

χ
βγλ

ω
α

χ

χ
βλ

ω
γα

χ

χ
β

µχ




+




−

−

−

−
∗

 (47) 

The matrix 3

3

σ
βD  is the inverse of 3

3

β
αD . 

Theorem 3 The Dirac bracket with respect to the irreducible second-class 

constraints, (47), coincides with that of the intermediate system (33)  

 [ ] [ ] .,,
,ired yz

GFGF
∗∗

≈  (48) 

 

5. "Irreducible" Dirac bracket 

In order to construct the irreducible second-class constraints for our model we 

introduce the new variables 
1αy and 

3αy   

 ;=,=
321

21

1 






















ϕαα

p
y

j
B

i
P

y
j

i
 (49) 

and take  

 .
01

10
=,

0]2
1

]2
1

0
=

332

2

1

1

2

2

1

1

11







 −
















−

βω
δδ

δδ

βω
αα jj

kk

ll

ii

 (50) 

In the analyzed model the functions 1

0

α
αA  and 3

2

α
αA  are given by  

 ,
][

6
1

0

0]2
1

=
32

2

1

1

3

2

2

1

11

0

















∂−

∂−

j

ll

iii

jj

kk

A

δδ

δδ
α

α  (51) 

 .
0

0
=

1

13

2 










∂

∂
j

i
A

α
α  (52) 

Then, the equivalent irreducible second-class constraints are expressed by  

 ( ) 0,]41~
321321321

≈∂−∂−≡
i

P
iiii iiki

k

i
πχ  (53) 
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( )

,
]

3
1~ 3213214212 j

B
jj

A
jj jjlj

l

j
∂−−∂≡χ  (54) 

 

( )
,

1

111
pP iki

k

i
∂+−∂≡

�
χ  (55) 

 

( )

.2 11

12

ϕχ
jlj

l

j

B ∂+∂−≡
�

 (56) 

Now, we construct the Dirac bracket with respect to the irreducible second-class 

constraints (53)-(56). In order to construct the elements of the matrix 
'''

C
∆∆ , we choose 1

1
ˆαβe  

and 2

1

β
βA  like 

 

1 2

1 21

1
1 2

1 2

1
0]4ˆ =

1
0 ]4

k k

k k

i i

e
i i

β

δ δ
α

δ δ

 
− ∆
 
 − 

∆ 

, (57) 

 

 .
][

2
1

0

0]
1

=
21

1

2

1

12

1

















∂
∆

∂
∆

j

l

ii

j

k

A

δ

δ
β

β  (58) 

The matrix 3

3

σ
βD  reads as 

 .
1

0

0
1

=3

3

















∆

∆σ
βD  (59) 

If we compute the Dirac bracket among the original field/momenta on behalf of (47), 

we reobtain the same fundamental non-vanishing Dirac brackets like in the reducible 

situation, namely, (28). 

 

6. Conclusion 

In this paper we have presented some equivalent approaches for the problem of the 

derivation of the Dirac bracket for a system with third-order reducible second-class 

constraints. Our strategy includes three main steps. First, we construct the Dirac bracket in 

terms of a noninvertible matrix 00βα
M . Second, we derive the Dirac bracket based on an 

invertible matrix 00βµ
α

. Third, we substitute the original second-class constraints by some 

equivalent irreducible ones in an enlarged phase-space and the Dirac bracket in this case is 
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equivalent with those in the above mentioned approaches. The general procedure was 

exemplified on gauge-fixed 4 -forms. 
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