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Abstract 
Applying the method of characteristics leads to wavefunctions and dynamic localization conditions for electrons 
on the one dimensional lattice under perpendicular time dependent electric and magnetic fields. This results in 
selected conditions concerning the number of magnetic flux quanta times π , as well as the quotients between the 
Bloch frequency and the ones characterizing competing fields. Such conditions proceed, in general, in terms of 
sums of two-factor products of Bessel  functions of the first  kind. Besides pure field limits and superpositions 
between uniform electric and time dependent magnetic fields, parity and periodicity effects have also been 
discussed.  
Keywords: Mesoscopic and nanoscale systems; Superlattices; Localization effects. 
 
 

1. Introduction  

 The dynamic localization (DL) of electrons moving on the one dimensional (1D) lattice 

under the influence of a longitudinal time dependent (TD) electric field like 0E( t ) E f ( t )=  

has received much interest since its discovery some 20 years ago [1-8]. This effect concerns 

the periodic return of the electron to the initially occupied site [1]. Accordingly, the mean 

square displacement (MSD) should remain bounded in time. In most cases which are of 

interest in practice the modulation function is periodic with period T but superpositions of 

several ac-fields can also be considered. The DL referred to above should then occur under 

selected conditions concerning the number of magnetic flux quanta, as well as the quotients 

between the field frequencies and the Bloch frequency 0B
E ea /ω = h , where a  stands for the 

lattice spacing. Besides applications in several areas like high field and nonlinear effects [2,3], 

trapping in two level atoms [4], persistent THz emission [5,6], the generation of higher 

harmonics [7] or the absolute negative conductance, the DL has been finally observed in the 

linear optical absorption coefficient of quantum dot superlattices [9]. It has also been found 

that the collapse of quasienergy bands is able to reflect the occurrence of DL [10-13]. Recent 

developments such as the DL of wave packets in barriers with TD parameters [14], the 

appearance and disappearance of resonant peaks in I V−  characteristics [15], or the influence 
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of higher order neighbors [16], are worthy of being mentioned, too. We have to realize that the 

influence of the uniform magnetic field on lattice electrons, such as exhibited by the celebrated 

Harper-equation [17-19], looks quite interesting in several respects. The same concerns several 

superpositions between electric and magnetic fields which have been studied during course 

[20-22]. However, a systematic study of wavefunctions and of DL effects produced by 

superpositions for which both electric and magnetic fields are TD seems of having been, to the 

best of our knowledge, overlooked. We shall then use this opportunity to discuss DL effects 

provided by the longitudinal TD electric field ( ) ( )( )0 0E t E t , ,=
ur

 working in conjunction with 

a transversal magnetic field like ( ) ( )( )0 0B t , ,B t=
ur

, where ( ) ( )0B t B g t= . To this aim we can 

start either by incorporating the electric field into the time dependent Harper-Hamiltonian [18], 

or from the decoupled limit of two parallel chains in electric and magnetic fields [21]. Such 

systems can be converted one into another with the help of gauge transformations [23]. The 

former alternative is appropriate for Hall conductance studies. We shall then choose the latter 

alternative since it complies in a more suitable manner with the DL problem. This opens the 

way to the derivation of general DL conditions, but concrete realizations such as 

superpositions between uniform electric and time dependent magnetic fields, will also be 

discussed. Last but not at least we shall deal with parity and periodicity effects. 

 

2. The derivation of the wavefunction  

 The Hamiltonian describing the electron on the 1D lattice under TD electric and 

magnetic fields specified above is given by [1,18,21] 

( )

( ) ( )

0 0

2 1 2 1
m m

m m m

H m m eaE f t m m m

V exp i / m m V exp i / m m

ε

γ γ

= − +

+ − + + +

∑ ∑

∑ ∑∑
    (1) 

where m is an integer ranging from −∞ to ∞ One has 

( ) ( )0 02 2t / g tγ γ πΦ Φ πβ= = =         (2) 

( )2
0B a g tΦ =  and 0 hc / eΦ = , respectively. So, there is , which stands for the magnetic 

commensurability parameter. The constant on-site energy is denoted by 0 0ε ω= h , whereas 

V U= h is responsible for the nearest neighbor hopping parameter. One deals, of course, with 

an orthonormalized Wannier-basis for which m,m'm m' δ= . We then have to account, as 

usual, for the TD single particle amplitude via 
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( ) ( ) ( )0m

m

t C t exp i t mΨ ω= −∑         (3) 

which leads in turn to the TD second-order discrete Schrödinger equation 

( ) ( ) ( ) ( ) ( ) ( )1 12 2
m m m B m

i C t U exp i / C t U exp i / C ( t ) m f t C t
t

γ γ ω− +

∂
= − + −

∂
  (4) 

The next step is to apply the discrete Fourier-transform 

( ) ( ) ( )
2

0

1
2m k

C t dk exp imk C t

π

π
= ∫ %         (5) 

where k  denotes the dimensionless wave number. Then (4) becomes 

( )2 0
2 B k

iU cos k f ( t ) C t
t k

γ
ω

 ∂ ∂  
+ + + =  ∂ ∂  

% %       (6) 

where  ( ) ( )
( )

( )
( )01

2
B B

d t dg t
f t f t f t

dt dt

γ πβ

ω ω
= − = −%     (7) 

Now we have to remember that (4) and (6) have been discussed before when 0γ =  by 

resorting to the method of characteristics [1]. What then remains is to generalize these latter 

results towards incorporating ( )tγ  such as given by (2). This results in the solution 

( ) ( )
0

2
t

' '

kC t exp iU dt cos t ,tΩ
 

= − 
 

∫%         (8) 

as it can be easily verified by direct computation. This time one has 

( ) ( ) ( )( )
2

' '

k Bt ,t cos k t t
γ

Ω ω η η
 

= + − −  
% %        (9) 

where ( ) ( ) ( ) ( ) ( )( )
0

1
0

2

t

' '

B

t dt f t t tη η γ γ
ω

= = − −∫ %%      (10) 

and ( ) ( )
0

t

' '
t dt f tη = ∫          (11) 

which is well known in the description of electric field problems. Accordingly, one gets faced 

with the normalized wavefunction 

( ) ( ) ( )( )2
m m

C t exp im J U Z tϕ= − %%         (12) 

by virtue of the well known properties of Bessel functions [24], where 

( )
( )

( )
2

t
t arg Z t

π γ
ϕ ϕ

+
= = − %% %         (13) 
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and ( ) ( )( )
0

t

' '

B
Z t dt exp i tω η= −∫% %         (14) 

which deserve further attention. 

 

3. Dynamic localization effects 

Using (12) produces the MSD 

( ) ( )
222 2 22m

m

m m C t U Z t= =∑ %          (15) 

which generalizes apparently (2.7) in [1] in terms of the substitution ( ) ( )t tη η→ % . Choosing 

as an example usual modulations like 

( ) ( )1f t cos tω=            (16) 

and ( ) ( )2g t sin tω=           (17) 

yields the characteristic function 

( ) ( ) ( )1 0 2
10

t

' ' 'BZ t dt exp i sin t i sin t
ω

ω πβ ω
ω

 
= − + 

 
∫%        (18) 

which can be rewritten equivalently as 

� ( )
( )

( )0
1

m,n B

m,n n m

m n m,n

sin t
Z exp i t J J

Ω ω
Ω πβ

Ω ω

 
=  

 
∑∑       (19) 

by virtue of expansions characterizing generating functions of Bessel functions [24], where 

( )2 1

1
2m,n

m m .Ω ω ω= −          (20) 

The point is to decompose � ( )Z t as � ( ) ( )1 2Z t Q t Q t= +      (21) 

in which ( )2Q t oscillates with time. Having discriminated the linear term in t  then produces 

the DL condition [1,13]  1 0Q =        

 (22) 

in which case the MSD remains bounded in time. On the other hand (19) shows that the 

discrimination of the linear term one looks for proceeds in terms of selected m and n values 

for which 0
m,n

.Ω →  To this aim let us assume that the frequencies 1ω and 2ω are 

commensurate. This amounts to deal with selected quotients like 

2

1

n P

m Q

ω

ω
= =            (23) 
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in which P and Q are mutually prime integers. We then have to realize that the DL condition 

characterizing specifically the present superposition of TD electric and magnetic fields is given 

in terms of sums of two-factor products of Bessel functions like 

( ) ( )1 1 0 0 0 0 0
11 1 1

0B B B

l Pl Ql

l

Q Q , J J p J J ,
ω ω ω

πβ πβ πβ
ω ω ω

∞

=

     
= = + =     

     
∑    (24) 

in which 

( ) ( )1 1
l P Q

l
p

+
= + −           (25) 

and 2 1P Q /ω ω= . Using, however, % ( ) ( )2g t cos tω=  instead of (17) produces the DL 

condition 

� ( ) ( ) ( )0 0 0 0 0 01
11 1 1

1 0
2

B B B

l Pl

l

Q , J J p exp i Ql exp i lP J J
ω ω ωπ

πβ πβ π πβ
ω ω ω

∞

=

       
= + + =          

       
∑  

(26) 

which proceeds up to a phase factor like ( )0exp iπβ− . Such results indicate that 

contributionsprovided by electric and magnetic fields can be placed on the same footing. 

One remarks that both (24) and (26) are sensitive to the parity of P Q+ . So (24) becomes 

( ) ( ) ( )1 1 0 0 0 0 2 2 0
11 1 1

2 0B B B

Pl Ql

l

Q Q , J J J J ,
ω ω ω

πβ πβ πβ
ω ω ω

∞
−

=

     
= = + =     

     
∑    (27) 

when P Q+  is an odd integer, but 

( ) ( ) ( )1 1 0 0 0 0 0
11 1 1

2 0B B B

Pl Ql

l

Q Q , J J J J ,
ω ω ω

πβ πβ πβ
ω ω ω

∞
+

=

     
= = + =     

     
∑    (28) 

if P Q+ is even. Such conditions are rather complex, so that when dealing with applications 

we have to resort to numerical studies. 
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