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Abstract 

Measurement of the frequency dependent, complex susceptibility, χ(ω) = χ´(ω) − iχ´´(ω), of magnetic 
fluids, by means of the toroidal technique, is a well established  technique for determining the dynamic 
properties of magnetic fluids. Here we further demonstrate its usefulness in investigating (1) the non-linear 
and (2) the isotropic properties of magnetic fluids under the influence of an external polarising field. In the 
case of a fluids isotropic properties we show how data, obtained from such polarised measurements, in 
conjunction with the Weierstrass hypothesis, can be used to determine the isotropic properties of a sample. 
We also show how the magnetic analogue of the non-linear model of Déjardin, may be used to describe the 
susceptibility spectra of magnetic fluids with values of polarizing fields up to 2,250 A/m.  
Keywords: Complex susceptibility; Relaxation; Non-linear; Isotropic properties ; Magnetic fluids. 

 

 

1. Introduction.  

A ferrofluid is a colloidal suspension of single domain ferromagnetic particles dispersed 

in a liquid carrier and stabilised by means of a suitable organic surfactant. The particles have 

radii ranging from approximately 2-10 nm and when they are in suspension their magnetic 

properties can be described by the Paramagnetism theory of Langevin, suitably modified to 

cater for a distribution of particle sizes.  The particles are considered to be in a state of 

uniform magnetisation with a magnetic moment, m, given by: m = Msv, where Ms denotes 

saturation magnetisation and v is the magnetic volume of the particle.  

The normalized magnetisation M/Ms is described by the Langevin expression, 

  M/Ms = [cothξ –1/ξ] =  L(ξ)                                         (1) 

where                                     L(ξ)=ξ /3 - ξ 3/45 + ξ 5/945+--,                                        (2) 

ξ= mΗ0/kT , where k is Boltzmanns constant and Η0 the magnetizing field. 



 

 2 

Thus L(ξ)  is a function of H0, H0
3
, H0

5 etc. which give rise to the non-linear properties 

of the samples. 

There are two distinct mechanisms by which the magnetisation of ferrofluids may relax 

after an applied field has been removed: either rotational Brownian motion of the particle 

within the carrier liquid, with its magnetic moment, m, locked in an axis of easy 

magnetisation, or by rotation of the magnetic moment within the particle. The time associated 

with the rotational diffusion is the Brownian relaxation time τΒ
 [1] where 

τΒ = 3 Vη/ kΤ                                                          (3) 

 V is the hydrodynamic volume of the particle and η is the dynamic viscosity of the 

carrier liquid.  

In the case of the second relaxation mechanism, the magnetic moment may reverse 

direction within the particle by overcoming an energy barrier, which for uniaxial anisotropy,  

is given by Kv, where K is the anisotropy constant of the particle. The probability of such a 

transition is exp( σ) where σ is the ratio of  anisotropy energy to thermal energy (Kv/kT). This 

reversal time is characterised by a time τ
N
, which is  referred to as the Néel relaxation time  

[2] , and given by the expression,   

τ
N

 = τ
0
 exp( σ)                                                          (4) 

τ0 is a decay time, often quoted as having an approximate value of 10 -8 to10 -10 s. 

 For the particle sizes used in this study, Néel relaxation would be observed in the MHz-

GHz region; thus in the frequency range measured here Brownian relaxation is considered to 

be dominant. 

     

2.  Susceptibility 

The frequency dependent complex susceptibility, χ(ω), may be written in terms of its 

real and imaginary components, where  

χ(ω) = χ´(ω) − iχ´´(ω)                                             (5) 

According to Debye' s theory [3] the complex susceptibility, χ(ω), has a frequency 

dependence given by the equation, 

χ(ω)− χ ∞   = (χ
0
 −χ ∞ )/(1 + i ω τ eff

)                                              (6)  

                    =  (χ
0
 −χ ∞ )(  1/(1 +  ω2

 τ2
 eff

)- i ω τ eff
 /(1 +  ω2

 τ2
 eff

  ))                       (7)  

where  χ ∞  indicates the  susceptibility value at very high frequencies and  χ0
 is the static or 

low frequency susceptibility, and is defined as  
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χ
0 =nm2/3kTµ

0                                                            (8) 

 n is the particle number density, k is Boltzmann’s constant and T the temperature. τ
eff is the 

effective relaxation time which , over the frequency range measured here, in this case is 

considered to be dominated by the Brownian relaxation time τΒ, where it may also be 

determined from, 

 τΒ   = 1/ ωmax = 1/2πfmax,                                                  (9)             

 where fmax is the frequency at which  χ" (ω)  is  a maximum. 

The relation between  χ' (ω) and χ" (ω)  and their dependence on frequency, ω/2π,  can 

be displayed by means of the magnetic analogue of the Cole-Cole plot [4] where the data fits 

a depressed circular arc. In the Cole-Cole case the circular arc cuts the χ' (ω) axis at an angle 

of  αcπ/2; αc  is referred to as the Cole-Cole parameter and is a measure of the particle-size 

distribution . 

The magnetic analogue of the Cole-Cole circular arc is described by the equation 

 χ(ω) = χ∞ +(χο − χ∞ )/[(1 + (i ωτ)1-αc),   0 < α < 1                     (10) 

which for αc =0, reduces to that of equation (6). 
 
 

3. Non-linear susceptibility. 

 

The non-linear behaviour of the susceptibility of a magnetic fluid [5] is due to the 

nature of its magnetisation curve, i.e its Langevin profile, the slope of which is the 

incremental susceptibility, ∆ χ(ω), and whose value decreases with increasing polarising 

field, as illustrated in Fig 1 which shows a typical magnetization curve for a ferrofluid 

sample. 

The linear region of a magnetization curve is considered to be the field range in which 

the tangent of the curve, which determines the susceptibility, given by adh/dM=χ , does not 

significantly change, as indicated by A in Fig 1.This is the low field region, usually below 1 

kA/m for typical ferrofluids. Beyond this range non-linearity gradually becomes significant as 

the slope of the magnetization curve gradually decreases as indicated by points B, C and D. 

In direct analogy with the dielectric case, ∆ χ(ω), is defined as the difference between 

the susceptibility value measured in the presence (χ(ω)H) and absence (χ(ω)H=0) of an 

external potential with  ∆ χ(ω)= χH(ω)- χH=0(ω), which can also be represented in the 

complex form,  ∆ χ(ω) = )("i)(' ωχ∆−ωχ∆ . 
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Fig 1.  Magnetisation curve of ferrofluid sample. 
 

 
In the investigation of the non-linear properties of dielectrics Coffey and Paranjape [6] 

derived a theory for nonlinear relaxation in dielectric systems, the magnetic analogue of 

which, as shown here, can be easily applied for the case of ferrofluids. 

We considered the case where an external potential, comprising a strong biasing and a 

relatively small alternating field ( 1H/H s0 << ) are superimposed, giving a total field 

)tcos(HH)t(H 0s ω+= . In this case the solution for χ is given by the expression [5, 6], 

where, 
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One can readily see that both of the above equations consist of a Debye component (Eqn. 7) 

together with a second component which is the non-linear component.  

The non-linear terms of Eqs. (11) and (12) are regarded as the increment of the 

susceptibility, ∆χ, due to the nonlinear response, thus we may write 
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The term χ∆  is the susceptibility difference between a polarised and an unpolarised 

measurement; it may also be represented in its complex form of χ ′′∆−χ′∆=χ∆ i  . 

The above expressions for non-linear susceptibility refer to the mono-dispersed case. To 

apply them to a realistic system we have to introduce ∞χ  into the expressions, and to account 

for the particle distribution. If the Cole-Cole parameter α is used, the following expression, as 

proposed by Déjardin [7] for the increment of the non-linear susceptibility, ∆χ, is arrived at, 

where, 
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For α=0 the latter equation is the complex form of the non-linear increment of susceptibility, 

Eqs. (13) and (14).  

 
4. Measurement Technique. 

 Complex magnetic susceptibility measurements, over the approximate frequency range 

100 Hz to 1 MHz, were made by means of the toroidal technique [8] in conjunction with a 

Hewlett Packard RF Bridge 4291A. A high permeability toroid wound with twenty excitation 

turns was used. A second coil comprising of 3 turns was also wound on the toroid and 

connected to a stabilized D.C supply to provide biasing magnetic fields, H. 

In the case of non-linear measurements H was varied from 0 to 3.75 kA/m on a 100 G 

colloidal suspension of magnetite in water whilst in the case of isotropic measurements H was 

varied from 0 to ±13.6 kA/m on  a 110 G colloidal suspension of magnetite in water.   

The values of the HS used were 750 A/m, 1.5 kA/m, 2.25 A/m, 3 kA/m and 3.75 kA/m 

and from inspection of the fluids magnetization curve it was determined that the first value of 

HS operated in the linear region whilst the remainder operated in the non-linear region. Here 

we present the results obtained in the 750 A/m case( linear) and in the 3.25 kA/m case (non-

linear). 

 

5. Non-Linear measurements. 

Here we will show just two of the five polarizing field measurements made, namely the 

contrasting results obtained for the 750 A/m and 3250 A/m fields. The measured 

susceptibility components and fits are presented in Fig. 2(a) for the case of 750 A/m field. 



 

 6 

The form of the fitting equation used is the same as Eqs. (11) and (12), with the Cole-Cole 

parameter α included (we also add in the high frequency susceptibility term, ∞χ ), 
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 We fit simultaneously the polarised curve (lower curve of Fig. 2 (a) with Eq. (16) and 

the unpolarised data with the usual Cole-Cole equation. The Brownian relaxation time of the 

unpolarised data was estimated to be Bτ =1.3×10
-4

 s and the α parameter was 0.45. The 

incremental deviation of the static susceptibility, 0χ∆ , in this instance is calculated as 

−=χ∆ 0 0.02. The small deviation between the unpolarised data and the polarised data is 

plotted in Fig. 2 (b), in which the fit for ∆χ is obtained by use of Eq. (15). The corresponding 

Cole-Cole diagram is the inset graph.  

Increasing the biasing field up to 2.25 kA/m it is found that the fit is still close to the 

data. A further increase ( >sH 3 kA/m) results in the polarised susceptibility deviating widely 

from the un-polarised susceptibility.  

The χ and ∆χ curves which correspond to the 3.75 kA/m polarizing field are presented in 

Fig. 3(a-b). Now, we are fully into the non-linear region. Here the increment 0χ∆ is much 

larger than with the previous field (750 A/m). The α parameter and moment mµ , used here, 

are the same as the previous field. The relaxation time of the polarised data is Bτ =7.2×10
-4

 s. 

In this case Eq. (16) cannot describe the non-linear effect anymore, because the non-linear 

term becomes comparable to the linear term. This is shown in Figs. 3(a) in which a “hump” 

appears as indicated by the arrows.  
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Fig 2. (a)  Plot of   χ´(ω) and χ´´(ω) for  unpolarised and 750 A/m data together with fits;  (b)  

Plot of   ∆χ´(ω) and ∆χ´´(ω) with fits and Cole-Cole insert. 
 



 

 7 

 

                                        

                                        

                                        

                                        

                                        

                                        

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
9

-0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Nonlinear fit

Debye fit

"Hump"

(i)

χ''

χ'

f(Hz)

 data

 fit                                         

                                        

                                        

                                        

                                        

                                        

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

-0.35

-0.30

-0.25

-0.20

-0.15

-0.10

-0.05

0.00

0.05

0.10

                                        

                                        

                                        

                                        

                                        

                                        

-0.30 -0.25 -0.20 -0.15 -0.10 -0.05 0.00

-0.08

-0.07

-0.06

-0.05

-0.04

-0.03

-0.02

-0.01

0.00

0.01

∆χ'

∆χ''

(j)

∆χ'

∆χ''

 data

 fit

f(Hz)

 
 

Fig 3. (a)  Plot of   χ´(ω) and χ´´(ω) for  unpolarised and 3750 A/m data together with fits;  
(b)  Plot of   ∆χ´(ω) and ∆χ´´(ω) with fits and Cole-Cole insert. 

 

 
6.  Isotropic Measurements. 

Determination of the isotropic properties may be realized through the measurement 

of  χ(ω, Η) = χ'(ω, Η)-i χ''(ω, Η),  of the fluids, by means of the toroidal technique as in the 

case of the non-linear measurements. The model used is based on the Weierstrass hypothesis 

[9] which essentially states that for a fluid to be isotropic plots of χ'(ω, Η), vs  H and χ''(ω, Η) 

vs  H, should be symmetrical about the vertical axis.  

Here this is achieved by measuring the fluids complex susceptibility for a cyclic 

variation of H: i) from 0 up to +13.6 kA/m back down to 0; ii) down to -13.6 kA/m and back 

up to 0 kA/m; iii) over the frequency range, 100 Hz to 1 MHz.  

The approximate values of H used being, 0, 2.7kA/m, 5.5 kA/m, 8.2 kA/m, 10.9 kA/m 

and 13.6 kA/m.  

 

6.1. Results of Isotropic Measurements. 

Fig 4. shows the results obtained over the polarizing field range 0-13.6-0 kA/m; the 

resuts obtained over the range 0- -13.6-0 proved to be almost identical. 

     As has been previously mentioned, for the magnetic fluid to be isotropic, the condition 

χ(ω, Η) = χ'(ω,− Η) and  χ''(ω, Η) = χ''(ω,− Η), must hold; this fact is demonstrated by the 

following examples in: i) Figs 5(a) and 5(b) which show the χ'  and χ'' data as a function of H 

at a frequency of 500Hz, ii) Figs 6(a) and 6(b) show the χ'  and χ'' data as a function of H at a 

frequency of 5kHz, iii) Figs 7(a) and 7(b) show the χ'  and χ'' data as a function of H at a 

frequency of 10kHz.      
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In all of the above cases, these plots are shown fitted to a 9th order polynominal and 

from inspection of the corresponding resulting odd coefficients one can determine how good 

an approximation is made to equation (16). 
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Thus these results clearly demonstrate, that in all the examples given, the plots are 

symmetrical about the vertical axis through the origin, thereby confirming that the isotropic 

properties of the sample have been unaffected by the application of a cyclic polarizing field     

 

7.  Overall Conclusions. 

The object of this work was two-fold, 

1) to investigate the non-linear behaviour of the susceptibility of a magnetic fluid, and  

2) to study the possible influence which the application of a cyclic polarizing field to a 

magnetic fluid would have on its isotropic properties. 

For 1) we demonstrated that the modified model of  Déjardin, may be used to describe 

the susceptibility spectra of magnetic fluids with values of HS up to 2,250 A/m.  

For 2) Plots of  χ'(ω, Η), vs  H and χ''(ω, Η) vs  H, were shown to be symmetrical about 

the vertical axis, thereby satisfying the Weierstrass hypothesis and confirming that the cyclic 

variation in H had negligible effect the isotropic properties of the fluid sample.  
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