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Abstract: 
Following the Öpik and Price method for harmonic vibration of a physical system (molecule, crystal), 
in this paper we calculate the new equilibrium position of the system due to anharmonic vibronic 
interaction. We consider a system with ochaedral symmetry for which double degenerate electronic 
state are coupled to double degenerate anharmonic vibrations of the nuclei. For such system we studied 
the quenches. of the orbital angular momentum and Jahm Teller interaction using for vibrations the 
clasical Morse wave function and also anharmonic coherent states. The liniar approximation of the 
vibronic coupling were used to obtain orbital reduction factor for the considered system. 
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1. Introduction 

The vibronic coupling between degenerate electronic states and degenerate vibrations 

of a physical system (molecules, crystals) with octahedral symmetry has been explored using 

for the vibrations the classical wavefunctions of the harmonic oscillator in a lot of papers [1-

5]. This effect was investigated also using coherent states [6-8].  

In order to obtain more accurate theoretical results in order to describe the molecular 

vibrations it can be used the model of Morse oscillator [9]. This model was used to calculate 

Franck-Condon factors [10]. Recently we have been built the anharmonic coherent states and 

we used them to study vibronic interaction E ⊗ ε and T ⊗ ε coupling [11]. The Jahn - Teller 

interaction quenches the orbital angular momentum even though it is insufficiently strong to 

produce static distortion. The partial quencing shows us as a reduction in the magnitude of the 

spin-orbit interaction, in the reduction of the orbital contribution of the magnetic moment, etc.  

This contribution acts as orbital reduction factors  (Ham factors) in the matrix elements of the 
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angular momentum or of the spin orbit interaction [12]. This effect was also discussed in 

connection with the experimental results [13,14,15]. In this paper, in order to obtain more 

accurate results the vibrations will be described by classical Morse wavefunctions, and 

secondly by the anharmonic coherent states. The linear approximation of the vibronic 

coupling will be used. We will use the Opik and Price method [16] to calculate the new 

equilibrium positions due to the vibronic interaction, for the case of a system with octahedral 

symmetry for which the double degenerate electronic states are coupled to double degenerate 

vibrations of the nuclei and will calculate the vibronic reduction factor (Ham factor).  

 

2. Anharmonic vibronic interaction 

We consider the Jahn - Teller interaction in a  E ⊗⊗⊗⊗ εεεε system for the case of 

anharmonic molecular vibrations described by Morse potential. The vibronic Hamiltonian 

consists in a double Morse oscillator and the Jahn – Teller interaction Hamiltonian: 
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(interaction with fully symmetric mode is taken into account as well) 

where xθ, xε are the coordinate operators and pθ, pε the momentum operators, α- the 

anharmonicity constant, V0 the anharmonic potential energy, and kJTE and kJTA are the Jahn - 

Teller coupling constants with a and e modes. I stands for a unit 3 x 3 matrix and Uλ, where 

(λ = θ, ε) are the following matrices: 
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He represents the electronic energy levels and kJT the Jahn -Teller interaction energy. 

We will denote by Η: 
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where the sum over λ contains the Hamiltonian of two anharmonic oscillators, described by 

the Morse potential ( )λλ αα xx
eeV

−− − 22
0  [17], where α > 0 is the anharmonicity parameter,V0>0. 

In (3) kJT represents the Jahn-Teller coupling constant. 

We use the yλ variable and the notations [17]: 
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where λ = θ, ε. 

The eigenfunctions of the Hamiltonian are for the discrete eigenenergy levels (Eλ ∈ [-

V0, 0]) are written in term of confluent hypergeometric functions [17]: 
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Solutions correspond to λλ nvs 212 −=−+ , (where nλ ∈N). The quantum number 

must be nλ = 0, 1, 2, ... , Nmax = [ µ ] where [µ ] represents the entire part of ( ) 21−= vµ .  The 

normalization constant is: 
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 The wavefunction of the system (1) in absence of Jahn-Teller interaction is a product 

of the electronic wave function Φ(R) and a double anharmonic oscillator 

( ) ( ) ( )εεθθ φφϕ xx=r : 
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( ) ( ) ( )rRrR, φΦ=Ψ . 

The new equilibrium position corresponds to the vibronic wavefunction: 

( ) ( ) ( ) ( )ii DxDx εεθθθθ φφ ++Φ=Ψ RrR,                               (6) 
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The equilibrium position will be: 
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where λiU  represents the diagonal element ( )
ii

U λ  of the matrix (2), and 0Ω  

represents the ground state vibration frequency  h00 ==Ω
λnE . 

 

3. The anharmonic reduction factor 

The matrix element an observable described by an operator A can be calculated  

( ) ( ) ( ) ( ) .'''',, εεθθεθεθ
jninjninAA jinnjnni RRrR,rR, ΦΦ=ΨΨ              (9) 

In the above equation the vibronic reduction factor (Ham factor) is: 
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where i, j = 1, 2, 3. 

The displaced wavefunction can be expressed in y variable as 
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for λ = θ, ε, and ( )
ii

Dλλ ασ −= exp . 

Results that (10) can be written: 
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where s'� corresponds to n'�. We can also express the confluent hypergeometric function in 

terms of Laguerre Ln
2s polynomials [18]: 
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This expansion can be used, replacing in (13) one of the confluent hypergeometric 

polynomial. Results: 
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The integral can be evaluated using the equation [18] 
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After calculations results that the Ham factor is: 
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This integral can be particularized for λ = θ, ε. 

 An important particular value of the factor corresponds to n'λ = n λ = 0. This 

corresponds to the zero-phonon line. In this case the confluent hyergeometric function 

becomes  ( ) 1,,0 =yaF . From Eq. (13) we obtain: 
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where 
iλσ and 

jλσ are: 
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An electronic operator FA with only off-diagonal matrix elements has matrix elements 

within the vibronic ground-state triplet 
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 Another particular factor of interest is: 
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 Results according (16):  
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In the second order perturbation theory we can calculate the correction to the  

ground state in the case of off-diagonal operators FA and FA’ :  
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where Ek (k = m, n) represents the energy levels of the Morse oscillator:  
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Conclusion 

The coupling between double degenerate electronic states and double degenerate 

vibrations for a physical system with octahedral symmetry has been studied in order to 

calculate vibronic reduction factor (Ham factor). We extended the calculation of the vibronic 

factor for the case of the harmonic vibrations of a physical system to that of the anharmonic 

vibrations. First we obtain the general formula for Ham factor using anharmonic vibrations, 
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described by the wavefunctions of classical Morse oscillator, and then we obtained it with the 

help of anharmonic coherent states. The results (17) and (18) are generalizations of the well 

known solutions of the harmonic oscillator model.  
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