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Abstract:

Following the Opik and Price method for harmonic vibration of a physical system (molecule, crystal),
in this paper we calculate the new equilibrium position of the system due to anharmonic vibronic
interaction. We consider a system with ochaedral symmetry for which double degenerate electronic
state are coupled to double degenerate anharmonic vibrations of the nuclei. For such system we studied
the quenches. of the orbital angular momentum and Jahm Teller interaction using for vibrations the
clasical Morse wave function and also anharmonic coherent states. The liniar approximation of the
vibronic coupling were used to obtain orbital reduction factor for the considered system.
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1. Introduction

The vibronic coupling between degenerate electronic states and degenerate vibrations
of a physical system (molecules, crystals) with octahedral symmetry has been explored using
for the vibrations the classical wavefunctions of the harmonic oscillator in a lot of papers [1-
5]. This effect was investigated also using coherent states [6-8].

In order to obtain more accurate theoretical results in order to describe the molecular
vibrations it can be used the model of Morse oscillator [9]. This model was used to calculate
Franck-Condon factors [10]. Recently we have been built the anharmonic coherent states and
we used them to study vibronic interaction E ® € and T ® € coupling [11]. The Jahn - Teller
interaction quenches the orbital angular momentum even though it is insufficiently strong to
produce static distortion. The partial quencing shows us as a reduction in the magnitude of the
spin-orbit interaction, in the reduction of the orbital contribution of the magnetic moment, etc.

This contribution acts as orbital reduction factors (Ham factors) in the matrix elements of the
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angular momentum or of the spin orbit interaction [12]. This effect was also discussed in
connection with the experimental results [13,14,15]. In this paper, in order to obtain more
accurate results the vibrations will be described by classical Morse wavefunctions, and
secondly by the anharmonic coherent states. The linear approximation of the vibronic
coupling will be used. We will use the Opik and Price method [16] to calculate the new
equilibrium positions due to the vibronic interaction, for the case of a system with octahedral
symmetry for which the double degenerate electronic states are coupled to double degenerate

vibrations of the nuclei and will calculate the vibronic reduction factor (Ham factor).

2. Anharmonic vibronic interaction
We consider the Jahn - Teller interaction in a E ® & system for the case of
anharmonic molecular vibrations described by Morse potential. The vibronic Hamiltonian
consists in a double Morse oscillator and the Jahn — Teller interaction Hamiltonian:
H=H,+H,+H,+H; =
(1)

2
p _ _
H€+ z _an +VO(€ 20 —2e axﬂ) +kJTAxAI+kJTE(x€U9 +X€U£),
A=0.¢

(interaction with fully symmetric mode is taken into account as well)

where xg, x. are the coordinate operators and pe, pe the momentum operators, o- the
anharmonicity constant, V, the anharmonic potential energy, and k,;7z and k74 are the Jahn -
Teller coupling constants with a and e modes. I stands for a unit 3 x 3 matrix and U,, where

(A= 6 &) are the following matrices:
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H, represents the electronic energy levels and k;7 the Jahn -Teller interaction energy.

We will denote by H:

2
H= ) —’; A4, (e_m“ —2e"*2 ) +kyp xal +kyr, (xgUg +x.U.)  (3)
A=0.¢ m

where the sum over A contains the Hamiltonian of two anharmonic oscillators, described by
the Morse potential V (e‘z"“‘ —2e % ) [17], where > 0 is the anharmonicity parameter, V;>0.

In (3) k;r represents the Jahn-Teller coupling constant.

We use the y, variable and the notations [17]:

8mV, —2mE
' Va'zhg 51T \ azhzﬁ’ y; =vexp(-ax,), “4)

The eigenfunctions of the Hamiltonian are for the discrete eigenenergy levels (E; € [-

where A= @ &

Vi, 0]) are written in term of confluent hypergeometric functions [17]:
S y .
Wn/l(y/l):%)’z exp(—;’ljF(—nﬁ,251+l,yﬁ). &)

Solutions correspond to 2s, +1—v=-2n,, (where n; €N). The quantum number
mustbe ny=0, 1, 2, ..., Ny = [ ¢ ] where [ ] represents the entire part of u = (v —1)/2 . The
normalization constant is:

1 F(v—nl)
I'(v-2n,) n!

cﬂ:

The wavefunction of the system (1) in absence of Jahn-Teller interaction is a product

of the electronic wave function ®(R) and a double anharmonic oscillator

olr)=g,(x,)¢. (x.):
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¥(R,r)=d(R)g(r).

The new equilibrium position corresponds to the vibronic wavefunction:
P(R,r)=(R)g, (x, + Dy ), (x, + D) (6)

OH _ oH =0. Results:

The equilibrium position can be established from the condition —
Xo Xe

k
expl-2a, ) expl-am, )~ - =
0

k.U
exp(— 20, )_ exp(— ax, )_ 2];‘/9
0

- 9

expl-20z, )~ expl-an ) - =
0

The equilibrium position will be:

Dﬁz—lln 1 1+ 1+2M , (7
o |2 ov,

Da:—llnl 1+ 1+2% , ®)
o |2 ov,

where U, represents the diagonal element (U, )ﬁ of the matrix (2), and Q,

represents the ground state vibration frequency Q, =E, / n.

3. The anharmonic reduction factor

The matrix element an observable described by an operator A can be calculated

(Ryr)AY,,. . (R,r)> =(®,(R)A|® j(R)><in9| jn')ing| jn',). )

<1Pi,n6ng

In the above equation the vibronic reduction factor (Ham factor) is:
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<inz| jn'/1> = _[Wnﬂ (x/l +D, )‘Vn'ﬂ (xz +D, )dx/p (10)
R
where i, j=1, 2, 3.

The displaced wavefunction can be expressed in y; variable as

4% (O'z, yz): €, (Gz,. Vi )u exp(— O-/Lzyl jF(_ ng2s, +10,y, )’ (1)

forA=6 ¢and 0, = exp(— aD, )

Results that (10) can be written:

<inﬂ|jn'ﬂ> = J-l//n/l (O-ﬂ,-yﬂ )l/,n'l (64 Ya )d)’z’

0

where o, = exp(— aD, ) and 0, = exp(— a'D/lj) represents scale factors.
Results finally:

. o DRV
(iny|jn';) = ¢, ¢,.0,0,
. o,+0, (13)
S;t+s d 1
« .[yﬂ/l 2 exp{_—2 d jF(—nﬂ,anﬂ +1,Giyﬂ)F(—n 1 ,2sn,ﬂ +1,0'ﬂiyﬂ)”1y1,
R+
where s’ corresponds to n';. We can also express the confluent hypergeometric function in

terms of Laguerre L,” polynomials [18]:

nC(2s +1) e

Fl—-n2s+1,y)= .
(=n2s+1,) T(nt2s+1) "

Results, expanding L,” polynomials [18]:

n _1 m
F(=n2s+1,y)=nl(2s+1)> e —m)'(F(n)l+ 21 1) y" (14)

This expansion can be used, replacing in (13) one of the confluent hypergeometric

polynomial. Results:
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e\ i 52
(inj| jn's) = ¢, ¢, 0,0,

& (-1)"o}
xn,\I'(2s, +1 15
a ( * ,,;) —m)'F(m+2sﬂ+1) (1)
m+s,+s' + Gﬂ' '
X .[y AT exp( —]F(—nﬂ,an,ﬂ +1,Gﬂl yﬂﬁyﬂ.
R,
The integral can be evaluated using the equation [18]
[e?y Flab.ky)y = MF(&V + 1,b,£j. (16)
0 A A
After calculations results that the Ham factor is:
<i"/1| jn'z> Co, nlgﬂ 0'/1
; (-1)"or
xn, T(2s, +1 4 17
& * n;) m)F(m+2sﬂ+1) un
' (o}
X [(m+s, Tniﬂ:l)lF —-n'y,m+s;,+s,+12s,. +1, b |
s;+s, ) LS ts,
) 2

This integral can be particularized for A = 6, &
An important particular value of the factor corresponds to n’; = n, = 0. This
corresponds to the zero-phonon line. In this case the confluent hyergeometric function

becomes F(0,a,y)=1. From Eq. (13) we obtain:
-1
s ) 1 0, +0
(i0,]70,) = (i0} j0) = ——-0,7 o (u} , (18)

where o0, and o, are:
i i)

k,,U kU
%=%{1+ 1+2 ’;Vﬂf J o, = ;(1+ 14224 ’;Vl ]
0 0

An electronic operator F4 with only off-diagonal matrix elements has matrix elements

within the vibronic ground-state triplet
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J

2(v-1)
0-9,"'0-6,,
2 J '

1 1y
<\PiOO|FA|\Pjoo> = <‘//i|FA|‘//j>mG;,. 1064 1(

Another particular factor of interest is:

v—1

<inﬂ| j01> =<in| j0> =c, €,0; 0';

T st o, +0; (19)
X_[yz ? exp —T/)’ﬂ F(_ n;.2s, +l,0; YA)
0
Results according (16):
v-1
<in1|j01> =<in| j0> =cnﬂc00'jj0'ﬂj2
rlo, +a, +1) o, (20)
T\ F|-n;,0, to, +12s, +1,—‘;_1 .
S;+——
) L2
In the second order perturbation theory we can calculate the correction to the
ground state in the case of off-diagonal operators F4 and Fy- :
\PiOO|FA|\Pknm> \Pknm FA'|\P‘OO
<lPiOO|FAA'|leOO> = z Z< < - >, (2D
k#i,jn,m Em _En

where Ej (k = m, n) represents the energy levels of the Morse oscillator:

2 2
Ek:ﬂ vl ) Caof Y2 g
o\ 2 2

Conclusion
The coupling between double degenerate electronic states and double degenerate
vibrations for a physical system with octahedral symmetry has been studied in order to
calculate vibronic reduction factor (Ham factor). We extended the calculation of the vibronic
factor for the case of the harmonic vibrations of a physical system to that of the anharmonic

vibrations. First we obtain the general formula for Ham factor using anharmonic vibrations,
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described by the wavefunctions of classical Morse oscillator, and then we obtained it with the
help of anharmonic coherent states. The results (17) and (18) are generalizations of the well

known solutions of the harmonic oscillator model.
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