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Abstract 

The periodic response of a one-degree of freedom system with cubic nonlinearities to a principal 

resonance is investigated. The modified homotopy perturbation method is used in order to determine the 

equations that describe the second-order approximate periodic solutions of the system. Results obtained 

are compared with the numerical integration results and a good agreement is found. 
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1. Introduction 

The problem dedicated to Duffing oscillator has received widespread attention in 

connection with interest in applications such as the rolling motion of a ship and the fact that it 

is isomorphic with other systems of importance in physics and engineering (e.g. Josephson 

junction oscillator and Foucault pendulum. Particularly interesting is the response of doffing 

oscillator to a harmonic excitation in the presence of viscous damping, which has been found 

to exhibit, among other features, hysteretic and chaotic behaviors. Thus, we consider a system 

governed by a non-dimensional differential equation of the form: 

tcoskuu2uu 32 Ωε=εα+εµ+ω+ &&&      (1) 

where ε is a small parameter, ω, µ, α, k and Ω are positive constant parameters. Primary 

resonance (i.e. Ω ≈ω) is considered in the next section. To determine the dependence of u(t) 

on the parameters ω(Ω), α, k and ε we develop an approximate second-order solution using 

modified homotopy perturbation method. 

 

2. Basic ideas of the modified perturbation method. 

 We have been considering systems governed by equations having the form 

)u,u,t(fuu 2
&&& Ωε=ω+       (2) 
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Where, in general f is a nonlinear analytical function, with the period T in the first 

variable. A periodic solution of Eq.(2) is given by the formula [8]: 
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and avoiding the secular term, we obtained ]1[
0Λ  from Eq.(5), respectively ]2[

0Λ  from Eq.(6), 

and the relationship between the constants of integration. In the same way, we can obtain all 

the j-th order deformation equations governing )2j(u
j
0 ≥ . 

 The frequency Ω is determined from the following equation: 
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3. Periodic solutions of Eq.(1) 

To determine second-order uniform periodic solutions of Eq.(1) we use the Modified 

Homotopy Perturbation Method and therefore Eqs (4), (5), (6). In this case, the function f 

becomes: 

tcosku2u)u,u,t(f 3 Ω+µ−α−=Ω &&     (9) 

Eq.(4) can be written as: 

0)t(u)t(u 0
2

0 =Ω+&&       (10) 

The solutions of Eq.(10) become: tsinBtcosA)t(u 0 Ω+Ω=     (11) 

where A and B are real unknown constants. 

Substituting Eqs.(11) into Eq.(5) yields: 
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The conditions for elimination of secular terms in Eq.(12) are: 
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Now, into (13) and (14) we put: 

R,r  ,cosrB  ,sinrA ∈ϕϕ=ϕ=      (15) 

and we obtain: 
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Substituting Eqs.(16) in Eq.(11) we obtain the first order solution: 
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The solution of Eq.(12) can be expressed as: 
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where C and D are real unknown constants. 

Substituting Eqs.(11) and (18) into Eq.(6), yields: 
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where N.S.T. stands for terms that do not produce secular terms. 

Avoiding the presence of secular terms needs: 
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This set of equations can be solved and we obtain: 
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Substituting Eqs.(16) and (22) in Eq.(18), we obtain: 
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Fig.1: Phase portrait for Eq.(1), 736,0=ω , 
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Substituting Eqs.(17) and (23) into Eq.(3), we find the second-order approximation to the 

solution of Eq.(1) for the primary resonant case ( ω≈Ω ) is  
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From Eqs.(16), (22) and (8) we obtain 
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Remark: From Eq.(24) we obtain 
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On the other hand, from Eq.(1) we obtain: 

)0(u)0(u2)0(uk)0(u 32 εα−εµ−ω−ε= &&&     (27) 

From (26) and (27) we obtain the parameter φ and from Eq.(25) we obtain the frequency 

Ω. In particular for 736,0=ω , 
2
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=µ , 1=α , 

2
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k = , 
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 Figure 1 shows the comparison 

between the present phase portrait 

obtained from formula (24) and the 

numerical integration results obtained by 

using a fourth order Runge-Kutta 

method. It can be seen that the solution 

obtained by the present method is nearly 

identical with that given by numerical 

method. 
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4. Conclusions 

 The Modified Homotopy Perturbation Method has been proved to be effective and has 

some distinct advantages over usual approximation methods, and a satisfactory result can be 

obtained. 
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