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Abstract 

In this paper, we apply a perturbation technique coupling with the iteration method for determination of 

approximate solution of a simple pendulum. This method valid for small as well as large values of 

oscillation amplitude can be applied for non-linear oscillations with single-degree-of-freedom. We 

compare the approximate period obtained by our procedure with the exact known period and the 

approximate solution with the numerical integration results obtained using a fourth order Runge-Kutta 

method. 
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1. Introduction 

Perturbation methods are a kind of powerful tools for treating weakly nonlinear 

problems, but they are less effective for analysis of strongly nonlinear problems [1]. But, like 

other nonlinear asymptotic techniques, perturbation methods have their own limitations: 

almost all perturbative methods are based on such an assumption that a small parameter must 

exist in an equation. This so-called small parameter assumption greatly restricts applications 

of perturbation techniques, as well as known, an overwhelming majority of nonlinear 

problems, especially those having strong nonlinearity, have no small parameter at all.  

There exist some alternative analytical asymptotic approaches, such as the 

nonperturbative method, weighted linearization method, homotopy analysis method, Adomian 

decomposition method, modified Lindstedt-Poincare method, interpolation perturbation 

methods. There also exists a wide body of literature dealing with the problem of approximate 

solutions to nonlinear equations with various different methodologies. It is very difficult to 

solve nonlinear problems either numerically or theoretically. This is possible due to the fact 

that various discredited methods or numerical simulations apply iteration techniques to find 

their numerical solution of nonlinear problems and nearly all iterative methods are sensitive to 

initial solution. 
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In this paper we propose a perturbation technique by combining iteration method of 

He [2] into a new iteration perturbation method. The solutions obtained by the present method 

are in pretty good agreement with those obtained by exact method or other methods. 

 

2. The method of analysis 

Consider the following, in general nonlinear oscillation: 

0)0(u,A)0(u),u(fuu 2 ===ω+ &&&       (1) 

We rewrite equation (1) in the following form [8]: 
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where Ω  is a priori unknown frequency of the periodic solution, u(t) being sought. The 

proposed iteration scheme is: 
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where the inputs of starting functions are: 
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 It is further required that for each n, the solution to equation (3), is to satisfy the initial 

conditions 
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 Right side of equation (5) can be expanded into the following Fourier series: 
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where the coefficients na and nb  are known, and the integer N depends upon the function 

)u(g  on the right hand side of Eq.(2). In Eq.(6), the requirement of no secular term needs 
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The solution of the equation (3) with the initial conditions (5) is taken to be: 
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 Equation (7) allows the determination of the frequency Ω  as a function of A and ω . 

This procedure can be performed to any desired iteration step n. An excellent approximate 
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analytical representation to the exact solution, valid for small as well as large values of 

oscillation amplitude is obtained. 

 

3. The motion of a simple pendulum 

When damping is neglected, the differential equation governing the free oscillation of the 

mathematical pendulum is given by 

0sinmgm =θ+θ&&l       (9) 

or 

0sina =θ+θ&&        (10) 

were m is the mass, l length of the pendulum, g the gravitational acceleration and
l

g
a = . The 

angle θ designates the deviation from the vertical equilibrium position. 

We rewrite equation (10) in the form 
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where Ω is an unknown frequency of the periodic solution. Here the initial conditions 

are A)0( =θ , 0)0( =θ& , the inputs of starting function are tcosA)t()t( 01 Ω=θ=θ− and 

θ

θ
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sin
a)(g 2 . The first iteration is given by the equation: 
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The term )tcosAsin( Ω  can be expanded in the power series: 
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We rewrite powers of tcosΩ in (13) in terms of the cosine of multiples of tΩ  with the aid 

of the identity [3] 
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By using (14), equation (13) may be expressed in the form 
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Substituting (15) into (12), this can be rewritten as: 
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No secular terms in θ1 requires that 
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and solving (16) with the initial conditions A)0(1 =θ , 0)0(1 =θ& , we  obtain 
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The approximate period can be expressed from Eq.(17): 
1

approx

2
T

Ω

π
=  and we obtain: 









+++++

π
= ...

23592960

A239

73728

A13

1536

A5

16

A
1

a

2
T

8642

approx    (20) 

while the exact period reads [1], [5]: 
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To compare with the exact period, we have the following Table 1: 
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0,99999681 

 

0,99999512 

 

0,99999211 

 

0,99976763 

 

0,99961425 

 

0,99951134 

 

0,99830437 

 

Table 1: Comparison between the approximate period Tapprox given by (24) and the exact 

solution Tex given by (25) 

 

 

 

 

Figure 1 shows the 

comparison among the present 

solution obtained from formulae 

(17) and (19) and the numerical 

integration results obtained by 

using a fourth order Runge-

Kutta method. 

 

 

 

 

 
Fig.1. Limit cycles of equation (19): a=100, A=π/4 
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4.Conclusions 

The proposed method is effective and has some distinct advantages over usual 

approximation methods in that the approximate solution obtained in the present paper is valid 

not only for weakly nonlinear oscillations, but also for strongly nonlinear ones. 
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