INVESTIGATION OF THE ANGULAR DISTORTION AROUND Cr ${ }^{3+}$ IN LiCaAIF 6

E. Preda, M. Ciresan, N. M. Avram
Department of Physics, West University of Timisoara, Bd. V. Parvan No. 4, 300233 Timisoara, Romania

Abstract

The local structure for Cr^{3+} in $\mathrm{LiCaAlF}_{6}$ are theoretically investigated from the perturbation formulas of the EPR parameters (zero-field splitting, $g_{\|}$and g_{\perp}) and splitting of first excited states for a $\mathbf{3 d}^{\mathbf{3}}$ ion, in trigonal symmetry, in the cluster approach. The results show that the local angle between the impurity-ligand bonding lengths and the C_{3} axis in the Cr^{3+} centers are larger than the angle in the hosts matrix. The calculated EPR parameters show a reasonable agreement with experimental data. Keywords: EPR, spin Hamiltonian parameters, Cr^{3+}, angular distortion.

1. Introduction

Single crystals of the collquirite fluoride family $\mathrm{LiAMF}_{6}(\mathrm{~A}=\mathrm{Ca}, \mathrm{Sr}$ and $\mathrm{M}=\mathrm{Al}, \mathrm{Ga})$, have been reported as efficient broadly tunable laser materials when doped with Cr^{3+}. The $\mathrm{LiCaAlF}_{6}$ (LiCAF), $\mathrm{LiSrAlF}_{6}(\mathrm{LiSAF}), \mathrm{LiSrGaF}_{6}(\mathrm{LiSGaF})$ and $\mathrm{LiCaGaF}_{6}(\mathrm{LiCGaF})$ crystals are very good as host matrices for laser crystals, due to easiness of their growth, their optical properties and laser performance [1-6].

It is well known that when the impurity ion substitutes a host ion in a crystal, the local structure surrounding the impurity becomes different from the corresponding structure in the host crystal. If the impurity is a paramagnetic ion, we can obtain useful information on the local structure of an impurity center by analyzing its EPR data [7, 8, 9], since the EPR parameters of a paramagnetic ion in crystal are sensitive to the local distortion of the impurity center. The distortion is associated with the relative rotations of the two opposite trigonal F^{-}faces, and as a result the site symmetry is lowered from Oh to D_{3}. The electronic paramagnetic resonance (EPR) technique is sensitive to low-symmetry distortions, that are why collquirite crystals have been investigated by this technique [10-12]. The aim of this paper is to calculate the EPR parameters
(zero-field splitting D and g factors $g_{\|}, g_{\perp}$) of Cr^{3+} replacing Al in LiCaAlF ${ }_{6}$. The spectroscopic parameter for $\mathrm{LiCaAlF}_{6}: \mathrm{Cr}^{3+}$ are [13] $D q=1587 \mathrm{~cm}^{-1}, B=786 \mathrm{~cm}^{-1}, C=3248 \mathrm{~cm}^{-1}$.

We will follow the line of our earlier papers [14, 15].

2. Basic theoretical background and calculation

Effective spin-Hamiltonian (SH) for 3d ions in a trigonal crystal field is written as [16]:

$$
\begin{equation*}
H=D\left(S_{z}^{2}-\frac{1}{3} S(S+1)+\mu_{B} g_{\|} B_{z} S_{z}+\mu_{B} g_{\perp}\left(B_{x} S_{x}+B_{y} S_{y}\right)\right) \tag{1}
\end{equation*}
$$

The lest two terms in Eq (1) are referred to as the Zeeman term, whereas the first term is known as the zero-field splitting (ZFS) term. D is the ZFS parameter and $g_{\|}, g_{\perp}$ stand for the EPR g-factors. Besides these parameters we will consider also the splitting energy $\delta\left({ }^{2} E\right)$ of first excited state.

Macfarlane $[17,18]$ has considered a d^{3}-ion in a trigonal octahedral center using the highorder perturbation approach. He obtained the following equations for calculating the EPR parameters $\mathrm{D}, g_{\|}, \Delta g=g_{\|}-g_{\perp}$ and the first excited state splitting $\delta\left({ }^{2} E\right)$:

$$
\begin{gather*}
D=\frac{2}{9} \xi^{2} v\left(\frac{1}{D_{1}^{2}}-\frac{1}{D_{3}^{2}}\right)-\sqrt{2} \xi^{2} v^{\prime}\left(\frac{2}{3 D_{1} D_{4}}+\frac{1}{D_{2} D_{3}}+\frac{1}{3 D_{3} D_{4}}+\frac{1}{D_{2} D_{4}}+\frac{4 \sqrt{2} B}{D_{1} D_{4} D_{5}}+\frac{4 B}{D_{3} D_{4} D_{5}}+\frac{9 B}{2 D_{2}^{2} D_{3}}\right) \tag{2}\\
g_{\|}=g_{s}-\frac{8 \xi k}{3 D_{1}}-\frac{2 \xi^{2}}{3 D_{2}^{2}}\left(k+g_{s}\right)+\frac{4 \xi^{2}}{9 D_{3}^{2}}\left(k-2 g_{s}\right)+\frac{8 \xi^{2}}{9 D_{1}^{2}}\left(k-2 g_{s}\right)-\frac{4 \xi^{2} k}{3 D_{1} D_{2}}+ \\
+\frac{4 \xi^{2} k}{9 D_{1} D_{3}}+\frac{4 \xi^{2} k}{3 D_{2} D_{3}}+\frac{8 \xi k}{9 D_{1}^{2}} v-\frac{8 \sqrt{2} \xi k}{3 D_{1} D_{4}} v^{\prime} \tag{3}\\
\Delta g=g_{\| 1}-g_{\perp}=\frac{4 \xi k}{3 D_{1}^{2}} v-\frac{4 \sqrt{2} \xi k}{D_{1} D_{4}} v^{\prime} \tag{4}\\
\delta\left({ }^{2} E\right)=E(\bar{E})-E(2 \bar{A})=4 \xi v\left(-\frac{1}{3 D_{7}}-\frac{4 B}{D_{7} D_{12}}+\frac{B}{D_{7} D_{13}}-\frac{4 B}{D_{10} D_{12}}+\frac{B}{D_{10} D_{13}}\right)+ \\
+2 \sqrt{2} \xi B v^{\prime}\left(\frac{4 \sqrt{3}}{D_{7} D_{12}}-\frac{\sqrt{3}}{D_{7} D_{13}}-\frac{4}{D_{8} D_{12}}-\frac{1}{D_{8} D_{13}}\right) \tag{5}
\end{gather*}
$$

where: $\mathrm{g}_{\mathrm{s}}=2.003, \xi=k \xi_{0}$ is the spin-orbit constant in a crystal, $k \approx\left(\sqrt{B / B_{0}}+\sqrt{C / C_{0}}\right) / 2$ [19] is the orbital reduction factor with B_{0} and C_{0} being the Racah parameters for a free ion and B and C
the Racah parameters in a crystal [20]. For Cr^{3+} free ion we take [19] $\mathrm{B}_{0}=1030 \mathrm{~cm}^{-1}, \mathrm{C}_{0}=3850$ cm^{-1} and $\xi_{0}=273 \mathrm{~cm}^{-1}$.

The zeroth-order energy denominations D_{i} are defined in tems of Racah parameters and crystal field strength Dq as follows:

$$
\begin{array}{lll}
D_{1}=\Delta=10 D q, & D_{2}=15 B+4 C, \\
D_{3}=\Delta+9 B+3 C, & & D_{4}=\Delta+12 B, \\
D_{5}=2 \Delta+3 B, & D_{7}=\Delta+6 B, & D_{8}=\Delta+6 B, \\
D_{10}=\Delta, & D_{12}=\Delta+14 B+3 C, D_{13}=\Delta+5 B .
\end{array}
$$

The trigonal field parameters v and v^{\prime} can be expressed using the superposition model of crystal field [21] as:
$v=\frac{18}{7} \bar{A}_{2}(R)\left(3 \cos ^{2} \theta-1\right)+\frac{40}{21} \bar{A}_{4}(R)\left(35 \cos ^{4} \theta-30 \cos ^{2} \theta+3\right)+\frac{40 \sqrt{2}}{3} \bar{A}_{4} \sin ^{3} \theta \cos \theta$
$v^{\prime}=-\frac{6 \sqrt{2}}{7} \bar{A}_{2}(R)\left(3 \cos ^{2} \theta-1\right)+\frac{10 \sqrt{2}}{21} \bar{A}_{4}(R)\left(35 \cos ^{4} \theta-30 \cos ^{2} \theta+3\right)+\frac{20}{3} \bar{A}_{4} \sin ^{3} \theta \cos \theta$

In these equations $\bar{A}_{2}(R)$ and $\bar{A}_{4}(R)$ are the intrinsic parameters of the model. For the transition metal ions in octahedral impurity centers $\bar{A}_{4}(R)=3 D q / 4$ [22].
θ is the angle between the C_{3} axis and metal-ligand chemical bond. In an ideal octahedron, $\theta=\arccos (1 / \sqrt{3}) \approx 54.7^{\circ}$; in a real (even undoped) crystal this angle differs from that value because of distortions.

The ratio $\bar{A}_{2}(R) / \bar{A}_{4}(R) \approx 10.5$ [23] we use for calculation.
Precise value of θ can be found from the X-ray diffraction data for a given crystal. The value of the angle θ differs for the doped crystal from that in the host crystal due to the differences in the mass and ionic radii between the substituted and substituting ions [19]. The value of θ can be determined by fitting the calculated spin-Hamiltonian parameters to those deduced from experimental EPR spectra. Equating D to the experimental value [15] yields the numerical value of θ, which corresponds to the angle between the C_{3} axis and "impurity ion-ligand" chemical
bond in the doped crystal. Experimental [11] and calculated (this work) SH and trigonal parameters for $\mathrm{LiCaAlF}_{6}$ doped with Cr^{3+} :

$$
\begin{array}{ll}
k=0.8960 & \\
D\left(10^{-4} \mathrm{~cm}^{-1}\right)(\exp .[11])=-1010 & \delta\left({ }^{2} E\right),\left(\mathrm{cm}^{-1}, \text { calc. }\right)=5.75 \\
D\left(10^{-4} \mathrm{~cm}^{-1}\right)(\text { calc. })=-1014 & g_{\|}(\exp .[11])=1.974(1) \\
\theta(\mathrm{deg})=54.97 & g_{\|}(\text {calc. })=1.963(8) \\
v\left(\mathrm{~cm}^{-1}\right)=-296 & g_{\perp}(\exp .[11])=1.974(2) \\
v^{\prime}\left(\mathrm{cm}^{-1}\right)=206 & g_{\perp}(\text { calc. })=1.964(8)
\end{array}
$$

As can be seen from above results, the calculated SH parameters are in reasonable agreement with experimental values. The value of the angle θ is very close to that one for an ideal octahedron, thus suggesting small trigonal deformation along the C_{3} axis. In some other crystals this deformation is greater. For example, the values of θ for Cr^{3+} in $\mathrm{Cs}_{2} \mathrm{NaGaF}_{6}$ are [24] 55.2 ${ }^{\circ}$ and 53.2° for two Cr^{3+} positions in this crystal.

3. Conclusions

The main purpose of this paper was to study theoretically the local trigonal angles Cr^{3+} centers in hexagonal fluorides $\mathrm{LiCa}(\mathrm{Al}) \mathrm{F}_{6}$, from their EPR spectra, by using the perturbation formulas for the spin Hamiltonian parameters ($\mathrm{D}, g_{\|}, g_{\perp}$) in trigonally distorted octahedral, based on the cluster approach. The results of calculations of the EPR g-factors are in reasonable agreement with experimental values.

References

[1] S.A. Payne, L. L. Chase, H.W. Newkirk, L.K. Smith and W.F. Krupke, IEEE J. Quantum Electron, 24, (1988) 2243;
[2] S.A. Payne, L.L. Chase and G.D. Wilke, J.Luminiscence, 44, (1989) 167;
[3] P.Beaud, M.C. Richardson, Y.F. Chen, B.H.T. Chai, IEEE J. Q. Electron, 30, (1994) 1259;
[4] F.Balembois, F. Falcoz, F. Kerboull, F. Druon, P. Georges and A. Brun, IEEE J. Quantum Electron, 33, (1997) 269;
[5] S.A. Payne, L.K. Smith, R.J. Beach, B.T.H. Chai, J.H. Tassano, L.D. DeLoach, W.L. Kway, R.W. Solarz and W.F. Krupke, Appl. Opt. 33 (1994) 5526;
[6] S.Uemura and K. Miyazaki, Japana J. Appl. Phys., 36 (1997) 4312;
[7] W.-C.Zheng, J. Phys. Chem. Solids 56, 61 (1995);
[8] W.-C.Zheng, Physica B245, 119 (1998);
[9] V.-K. Jain, Z. Naturforsch. 58a, 667 (2003);
[10] R. Wannemacher and R.S. Meltzer, J. Lumin., 43, (1989) 251;
[11] M. Yamaga, B. Henderson, K.Holliday, T. Yasida, M. Fukui and Kindo, J. Phys. Condens.Mater, 11, (1999) 10499;
[12] A.N.Medina, A.C. Bento, M.L.Baesso, F.G. Gandra, T. Catunda, and A. Cassanho, J. Phys.: Condens Matter 13 (2001) 8435;
[13] S.A. Payne, L.L. Chase and G.D. Wilke, I. Luminiscence, 44167 (1989);
[14] N.M. Avram, M.G. Brik and C.N. Avram, in New Trends in Advanced Materials (Eds, N.M.Avram, V.Pop, R.Tetean), Ed. Univ. Vest, Timisoara, 2005;
[15] M.G.Brik, C.N. Avram and N.M. Avram, Physica B.;
[16] I.L. Pilbrow, Transition Ion Electron Paramagnetic Resonance, oxford, Clarendon, 1990;
[17] R.M. Macfarlane, J. Chem. Phys. 472066 (1967);
[18] R.M. Macfarlane, Phys. Rev. B 1989 (1970);
[19] Z.Y. Yang, C.Rudowicz, J. Qin, Physica B 318, 188 (2002);
[20] I.Griffith, The Theory of Trans.-Metal Ions, Cambridge University Press, London 1964;
[21] D.J. Newman, B.Ng, Rep. Progr. Phys. 52, 699 (1989);
[22] W.L. Yu, M. G. Zhao, Phys. Rev. B 37, 9254 (1988);
[23] W.C.Zheng, Q.Zhou, Y.Mei, X.X.Wu, Opt.Mater. 27 (2004) 449
[24] M.G. Brik, N.M. Avram, C.N.Avram, Solid State Commun. 132 (2004) 831.

